Publications by authors named "Carlos E Couri"

To evaluate safety and therapeutic effect along 12 months of allogenic adipose tissue-derived stromal/stem cells (ASCs) transplantation with cholecalciferol (VITD) in patients with recent-onset type 1 diabetes (T1D). Prospective, phase II, open trial, pilot study in which patients with recent onset T1D received ASCs (1xKgx10 cells) and VITD 2000UI/day for 12 months (group 1) and were compared to controls with standard insulin therapy (group 2). Adverse events, C-peptide area under the curve (CPAUC), insulin dose, HbA1c and frequency of FoxP3+ in CD4+ or CD8+ T-cells(flow cytometry) were evaluated at baseline(T0), after 3(T3), 6(T6) and 12 months(T12).

View Article and Find Full Text PDF

Objective: To explore the impact on microvascular complications, long-term preservation of residual B-cell function and glycemic control of patients with type 1 diabetes treated with autologous nonmyeloablative hematopoietic stem-cell transplantation (AHST) compared with conventional medical therapy (CT).

Research Design And Methods: Cross-sectional data of patients treated with AHST were compared with patients who received conventional therapy from the Brazilian Type 1 Diabetes Study Group, the largest multicenter observational study in type 1 diabetes mellitus in Brazil. Both groups of patients had diabetes for 8 years on average.

View Article and Find Full Text PDF

Autologous hematopoietic stem cell transplantation (AHSCT) increases C-peptide levels and induces insulin independence in patients with type 1 diabetes. This study aimed to investigate how clinical outcomes may associate with the immunological status, especially concerning the balance between immunoregulation and autoreactivity. Twenty-one type 1 diabetes patients were monitored after AHSCT and assessed every 6 months for duration of insulin independence, C-peptide levels, frequencies of islet-specific autoreactive CD8 T cells (CTL), regulatory lymphocyte subsets, thymic function, and T-cell repertoire diversity.

View Article and Find Full Text PDF

Context: Metabolic syndrome (MetS) shares several similarities with hypercortisolism.

Objectives: To evaluate hypothalamic-pituitary-adrenal (HPA) axis sensitivity to dexamethasone (DEX), NR3C1 single nucleotide polymorphisms (SNPs), and expression of glucocorticoid receptor (GR) isoforms and cytokines in peripheral immune cells of MetS patients and controls.

Design: Prospective study with 40 MetS patients and 40 controls was conducted at the Ribeirão Preto Medical School University Hospital.

View Article and Find Full Text PDF

Background: Bone marrow multipotent mesenchymal stromal cells (MSCs) are a diverse subset of precursors that contribute to the homeostasis of the hematopoietic niche. MSCs can be isolated and expanded in vitro and have unique immunomodulatory and regenerative properties that make them attractive for the treatment of autoimmune diseases, including type 1 diabetes (T1D). Whether autologous or allogeneic MSCs are more suitable for therapeutic purposes has not yet been established.

View Article and Find Full Text PDF

Background: Type 1 diabetes mellitus (T1D) is characterized by autoimmune responses resulting in destruction of insulin-producing pancreatic beta cells. Multipotent mesenchymal stromal cells (MSCs) exhibit immunomodulatory potential, migratory capacity to injured areas and may contribute to tissue regeneration by the secretion of bioactive factors. Therefore, MSCs are considered as a promising approach to treat patients with different autoimmune diseases (AID), including T1D patients.

View Article and Find Full Text PDF

Type 1 diabetes mellitus is a chronic disease that results from the autoimmune response against pancreatic insulin producing β cells. Apart of several insulin regimens, since the decade of 80s various immunomodulatory regimens were tested aiming at blocking some steps of the autoimmune process against β cell mass and at promoting β cell preservation. In the last years, some independent research groups tried to cure type 1 diabetes with an "immunologic reset" provided by autologous hematopoietic stem cell transplantation in newly diagnosed patients, and the majority of patients became free form insulin with increasing levels of C-peptide along the time.

View Article and Find Full Text PDF

In this review, we present (1) a brief discussion of hematopoietic stem cell transplantation (HSCT) for severe and refractory autoimmune diseases (AIDs) from its beginning in 1996 through recently initiated prospective randomized clinical trials; (2) an update (up to July 2009) of clinical and laboratory outcomes of 23 patients with newly diagnosed type 1 diabetes mellitus (T1DM), who underwent autologous HSCT at the Bone Marrow Transplantation Unit of the Ribeirão Preto Medical School, University of São Paulo, Brazil; (3) a discussion of possible mechanisms of action of HSCT in AIDs, including preliminary laboratory data obtained from our patients; and (4) a discussion of future perspectives of stem cell therapy for T1DM and type 2 DM, including the use of stem cell sources other than adult bone marrow and the combination of cell therapy with regenerative compounds.

View Article and Find Full Text PDF

The present review discusses the use of autologous hematopoietic stem cell transplantation (HSCT) for the treatment of diabetes mellitus type 1 (DM 1). It has been observed that high dose immunosuppression followed by HSCT shows better results among other immunotherapeutic treatments for the disease as the patients with adequate beta cell reserve achieve insulin independence. However, this response is not maintained and reoccurrence of the disease is major a major challenge to use HSCT in future to prevent or control relapse of DM 1.

View Article and Find Full Text PDF

Type 1 diabetes mellitus is an autoimmune disease against pancreatic β cells. The autoimmune response begins months or years before the clinical presentation. At the time of hyperglycemic symptoms a small amount of β cell mass still remains.

View Article and Find Full Text PDF

Stem cell therapy is one of the most promising treatments for the near future. It is expected that this kind of therapy can ameliorate or even reverse some diseases. With regard to type 1 diabetes, studies analyzing the therapeutic effects of stem cells in humans began in 2003 in the Hospital das Clínicas of the Faculty of Medicine of Ribeirão Preto - SP USP, Brazil, and since then other centers in different countries started to randomize patients in their clinical trials.

View Article and Find Full Text PDF

Background: The use of stem cells to treat type 1 diabetes mellitus has been proposed for many years, both to downregulate the immune system and to provide beta cell regeneration.

Conclusion: High dose immunosuppression followed by autologous hematopoietic stem cell transplantation is able to induce complete remission (insulin independence) in most patients with early onset type 1 diabetes mellitus.

View Article and Find Full Text PDF

Context: In 2007, the effects of the autologous nonmyeloablative hematopoietic stem cell transplantation (HSCT) in 15 patients with type 1 diabetes mellitus (DM) were reported. Most patients became insulin free with normal levels of glycated hemoglobin A(1c) (HbA(1c)) during a mean 18.8-month follow-up.

View Article and Find Full Text PDF

In this review, we present (1) the scientific basis for the use of high-dose immunosuppression followed by autologous peripheral blood hematopoietic stem cell transplantation for newly diagnosed type 1 diabetes (T1D); (2) an update of the clinical and laboratory outcome of 20 patients transplanted at the University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Brazil, and followed up to January/2008, including 4 relapses among 19 patients without previous ketoacidosis; (3) a commentary on criticisms to our article that appeared in four articles from the scientific literature; and (4) a discussion of the prospectives for cellular therapy for T1D.

View Article and Find Full Text PDF

Type 1 diabetes mellitus (T1DM) is the result of the autoimmune response against pancreatic insulin producing beta cells. This autoimmune response begins months or even years before the first presentation of signs and symptoms of hyperglycemia and at the time of clinical diagnosis near 30% of beta-cell mass still remains. In daily clinical practice, the main therapeutic option for T1DM is multiple subcutaneous insulin injections that are shown to promote tight glucose control and reduce much of diabetic chronic complications, especially microvascular complications.

View Article and Find Full Text PDF

Type 1 diabetes mellitus is the result of the autoimmune response against pancreatic beta-cell(s). At the time of clinical diagnosis near 70% of beta-cell mass is been destroyed as a consequence of the auto-destruction that begins months or even years before the clinical diagnosis. Although marked reduction of chronic complications was seen after development and progression of insulin therapy over the years for type 1 diabetic population, associated risks of chronic end-organ damage and hypoglycemia still remain.

View Article and Find Full Text PDF

Context: Type 1 diabetes mellitus (DM) results from a cell-mediated autoimmune attack against pancreatic beta cells. Previous animal and clinical studies suggest that moderate immunosuppression in newly diagnosed type 1 DM can prevent further loss of insulin production and can reduce insulin needs.

Objective: To determine the safety and metabolic effects of high-dose immunosuppression followed by autologous nonmyeloablative hematopoietic stem cell transplantation (AHST) in newly diagnosed type 1 DM.

View Article and Find Full Text PDF

Background: Since its first description, Mönckeberg's sclerosis has only been related to arterial media calcification, being listed among the primary diseases of the vessels.

Case Presentation: We report here a clinically and histologically confirmed case of Mönckeberg's sclerosis in which the patient presented with massive areas of soft tissue calcifications in the pharynx and larynx. Polysomnographic parameters showed severe obstructive apnea refractory to nasal continuous positive airway pressure.

View Article and Find Full Text PDF

Despite the high prevalence of leprosy in undeveloped countries, hypercalcemia secondary to leprosy is rare. One of most important mechanisms responsible for this disorder seems to be high serum concentrations of 1,25-dihydroxyvitamin D produced extrarenally by the granulomatous tissue. Serum levels of parathyroid hormone-related protein (PTHrP) have never been analyzed in this disorder.

View Article and Find Full Text PDF