Publications by authors named "Carlos E Cava"

This study presents a novel approach for creating an effective air filtration medium using electrospun nanofibers comprised of poly(vinyl chloride) (PVC), poly(vinylpyrrolidone) (PVP), and impregnated with multiwall carbon nanotubes (MWCNTs). The membrane production was optimized using an experimental design methodology, resulting in a hydrophobic membrane that exhibits excellent dispersion of MWCNTs. Scanning electron microscopy images illustrate the nanofibers' morphology, featuring an average diameter of approximately 240 nm, minimal bead formation, and optimal MWCNT dispersion.

View Article and Find Full Text PDF

Pesticides present in water resources can cause adverse health effects even in low concentrations, due to their bio-accumulative character. Therefore, the challenge for drinking water production increases, due to the limitations of conventional water treatment technologies in the removal of small molecular weight dissolved compounds. This work aimed to provide technical and scientific support for the selection of pulverized activated carbon - PACs, granular activated carbon - GACs, and carbon nanotubes - CNT concerning atrazine - ATZ, simazine - SMZ, and diuron - DIU adsorption for application in water treatment plants, considering two forms of application commercial product - CP and analytical standard - SD.

View Article and Find Full Text PDF

A versatile and room temperature synthesis of thin films of polymer/graphene is reported. Drastically differing from other methods, not only the polymer but also the graphene are completely built from their simplest monomers (thiophene and benzene) in a one-pot polymerization reaction at a liquid-liquid interface. The materials were characterized and electronic properties are presented.

View Article and Find Full Text PDF

Iron-oxide-filled carbon nanotubes exhibit an intriguing charge bipolarization behavior which allows the material to be applied in resistive memory devices. Raman analysis conducted with an electric field applied in situ shows the Kohn anomalies and a strong modification of the electronic properties related to the applied voltage intensity. In addition, the I(D)/I(G) ratio indicated the reversibility of this process.

View Article and Find Full Text PDF

This work presents a study on iron-oxide filled carbon nanotubes (CNTs) and their interaction with the surrounding atmosphere. Theoretical and experimental methods were employed to determine the interaction mechanism between the CNTs and some gases, such as O2 and N2. The electrical behavior of these CNTs under different atmospheric conditions was studied through resistance measurements, and for comparison, similar studies were conducted on non-filled carbon nanotubes.

View Article and Find Full Text PDF