Publications by authors named "Carlos Dotti"

Neuronal differentiation and maturation are crucial for developing research models and therapeutic applications. Brain-derived neurotrophic factor (BDNF) is a widely used biochemical stimulus for promoting neuronal maturation. However, the broad effects of biochemical stimuli on multiple cellular functions limit their applicability in both in vitro models and clinical settings.

View Article and Find Full Text PDF

Analyzing changes in gene expression within specific brain regions of individuals with Type 2 Diabetes (T2DM) who do not exhibit significant cognitive deficits can yield valuable insights into the mechanisms underlying the progression towards a more severe phenotype. In this study, transcriptomic analysis of the cortex and hippocampus of mice with long-term T2DM revealed alterations in the expression of 28 genes in the cerebral cortex and 15 genes in the hippocampus. Among these genes, six displayed consistent changes in both the cortex and hippocampus: Interferon regulatory factor 7 (Irf7), Hypoxia-inducible factor 3 alpha (Hif-3α), period circadian clock 2 (Per2), xanthine dehydrogenase (Xdh), and Transforming growth factor β-stimulated clone 22/TSC22 (Tsc22d3) were upregulated, while Claudin-5 (Cldn5) was downregulated.

View Article and Find Full Text PDF

In this work, we tested the hypothesis that the development of dementia in individuals with type 2 diabetes (T2DM) requires a genetic background of predisposition to neurodegenerative disease. As a proof of concept, we induced T2DM in middle-aged hAPP NL/F mice, a preclinical model of Alzheimer's disease. We show that T2DM produces more severe behavioral, electrophysiological, and structural alterations in these mice compared with wild-type mice.

View Article and Find Full Text PDF

Ageing is associated with notorious alterations in neurons, i.e., in gene expression, mitochondrial function, membrane degradation or intercellular communication.

View Article and Find Full Text PDF

One of the characteristics of aging is a gradual hypo-responsiveness of cells to extrinsic stimuli, mainly evident in the pathways that are under hormone control, both in the brain and in peripheral tissues. Age-related resistance, i.e.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) play an important role in intercellular communication and are involved in both physiological and pathological processes. In the central nervous system (CNS), EVs secreted from different brain cell types exert a sundry of functions, from modulation of astrocytic proliferation and microglial activation to neuronal protection and regeneration. However, the effect of aging on the biological functions of neural EVs is poorly understood.

View Article and Find Full Text PDF

As neurons age, they show a decrease in their ability to degrade proteins and membranes. Because undegraded material is a source of toxic products, defects in degradation are associated with reduced cell function and survival. However, there are very few dead neurons in the aging brain, suggesting the action of compensatory mechanisms.

View Article and Find Full Text PDF

In humans, a considerable number of the autopsy samples of cognitively normal individuals aged between 57 and 102 years have revealed the presence of amyloid plaques, one of the typical signs of AD, indicating that many of us use mechanisms that defend ourselves from the toxic consequences of Aß. The human APP NL/F (hAPP NL/F) knockin mouse appears as the ideal mouse model to identify these mechanisms, since they have high Aß42 levels at an early age and moderate signs of disease when old. Here we show that in these mice, the brain levels of the hemoprotein Neuroglobin (Ngb) increase with age, in parallel with the increase in Aß42.

View Article and Find Full Text PDF

The centrosome is thought to be the major neuronal microtubule-organizing center (MTOC) in early neuronal development, producing microtubules with a radial organization. In addition, albeit in vitro, recent work showed that isolated centrosomes could serve as an actin-organizing center, raising the possibility that neuronal development may, in addition, require a centrosome-based actin radial organization. Here, we report, using super-resolution microscopy and live-cell imaging of cultured rodent neurons, F-actin organization around the centrosome with dynamic F-actin aster-like structures with F-actin fibers extending and retracting actively.

View Article and Find Full Text PDF

To determine whether a p38 MAPK inhibitor incorporated into nanoemulsion-based chitosan nanocapsules can reduce the activity of this kinase in the brain through their nasal administration in mice. We selected the p38 MAPK inhibitor PH797804, an ATP-competitive inhibitor of p38α encapsulated in nanoemulsion-based chitosan nanocapsules. Biological effect was evaluated in microglial and neuronal cells and in and systems, in a mouse model of Alzheimer's disease.

View Article and Find Full Text PDF

Numerous studies suggest that the increased activity of p38MAPK plays an important role in the abnormal immune and inflammatory response observed in the course of neurodegenerative diseases such as Alzheimer's disease. On the other hand, high levels of p38MAPK are present in the brain during normal aging, suggesting the existence of mechanisms that keep the p38MAPK-regulated pro-inflammatory activity within physiological limits. In this study, we show that high p38MAPK activity in the hippocampus of old mice is in part due to the reduction in membrane cholesterol that constitutively occurs in the aging brain.

View Article and Find Full Text PDF

In the brain, insulin plays an important role in cognitive processes. During aging, these faculties decline, as does insulin signaling. The mechanism behind this last phenomenon is unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Common mouse models for Alzheimer's often involve overexpressing a human amyloid precursor protein (APP) gene and a mutated presenilin gene.
  • Despite having a single APP Swedish mutation, humanized APP knock-in mice (AppNL) do not show typical Alzheimer symptoms like plaque aggregation or cognitive decline.
  • Even at 24 months old, AppNL/NL mice show some amyloid-β oligomers, but still lack plaque deposition, reactive gliosis, and cognitive deficits, suggesting a unique aspect of this model.
View Article and Find Full Text PDF

Type 2 diabetes (T2DM) and obesity might increase the risk for AD by 2-fold. Different attempts to model the effect of diet-induced diabetes on AD pathology in transgenic animal models, resulted in opposite conclusions. Here, we used a novel knock-in mouse model for AD, which, differently from other models, does not overexpress any proteins.

View Article and Find Full Text PDF

Background And Objectives: At the time of its introduction in the early 80s, endoscopic ultrasonography (EUS) was indicated for diagnostic purposes. Recently, EUS has been employed to assist or to be the main platform of complex therapeutic interventions.

Methods: From a series of relevant new topics in the literature and based on the need to complement the I Brazilian consensus on EUS, twenty experienced endosonographers identified and reviewed the pertinent literature in databases.

View Article and Find Full Text PDF

In a most simplified way, we can say that much of the symptomatology that characterizes Alzheimer's disease (AD) can be attributed to a cascade of toxic events initiated by the presence in the interstitial space of the brain of oligomers of the β‐amyloid peptide (Aβ) peptide, a cleavage by‐product of the Amyloid precursor protein (APP). Intuitively, it follows that the amyloid peptide is the ideal target to combat this disease. However, several anti‐Aβ therapies failed in clinical trials devoted to find a treatment for AD.

View Article and Find Full Text PDF

Altered processing of the Amyloid Precursor Protein (APP) is a well-recognized central pathogenic mechanism in Alzheimer's Disease (AD), and regulation of APP processing is a major focus of research in the AD field. However, how age-associated cellular and molecular changes contribute to changes in the amyloidogenic processing of APP have not been extensively clarified so far. We here provide evidence that the processing of APP is influenced by the e3 ubiquitin ligase Mahogunin (MGRN1), a neuroprotective molecule whose levels decrease with aging.

View Article and Find Full Text PDF

A decline in proteasome function is causally connected to neuronal aging and aging-associated neuropathologies. By using hippocampal neurons in culture and in vivo, we show that aging triggers a reduction and a cytoplasm-to-nucleus redistribution of the E3 ubiquitin ligase mahogunin (MGRN1). Proteasome impairment induces MGRN1 monoubiquitination, the key post-translational modification for its nuclear entry.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a severe and progressive neuronal loss leading to cognitive dysfunctions. Previous reports, based on the use of chemical inhibitors, have connected the stress kinase p38α to neuroinflammation, neuronal death and synaptic dysfunction. To explore the specific role of neuronal p38α signalling in the appearance of pathological symptoms, we have generated mice that combine expression of the 5XFAD transgenes to induce AD symptoms with the downregulation of p38α only in neurons (5XFAD/p38α∆-N).

View Article and Find Full Text PDF

Tetraspanins (Tspan) are transmembrane proteins with important scaffold and signalling functions. Deletions of Tetraspanin 6 (Tspan6) gene, a member of the tetraspanin family, have been reported in patients with Epilepsy Female-restricted with Mental Retardation (EFMR). Interestingly, mutations in Tspan7, highly homologous to Tspan6, are associated with X-linked intellectual disability, suggesting that these two proteins are important for cognition.

View Article and Find Full Text PDF

Cognitive capacities decline with age, an event accompanied by the altered transcription of synaptic plasticity genes. Here, we show that the transcriptional induction of Bdnf by a mnemonic stimulus is impaired in aged hippocampal neurons. Mechanistically, this defect is due to reduced NMDA receptor (NMDAR)-mediated activation of CaMKII.

View Article and Find Full Text PDF