We demonstrate that one-dimensional moiré patterns, analogous to those found in twisted bilayer graphene, can arise in collapsed chiral carbon nanotubes. Resorting to a combination of approaches, namely, molecular dynamics to obtain the relaxed geometries and tight-binding calculations validated against ab initio modeling, we find that magic angle physics occur in collapsed carbon nanotubes. Velocity reduction, flat bands, and localization in AA regions with diminishing moiré angle are revealed, showing a magic angle close to 1°.
View Article and Find Full Text PDFA first-principles study of the stability and optical response of subnanometer silver clusters Agn (n ≤ 5) on a TiO2(110) surface is presented. First, the adequacy of the vdW-corrected DFT-D3 approach is assessed using the domain-based pair natural orbital correlation DLPNO-CCSD(T) calculations along with the Symmetry-Adapted Perturbation Theory [SAPT(DFT)] applied to a cluster model. Next, using the DFT-D3 treatment with a periodic slab model, we analyze the interaction energies of the atomic silver clusters with the TiO2(110) surface.
View Article and Find Full Text PDF