Publications by authors named "Carlos C Bof Bufon"

Recent progress in synthesizing and integrating surface-supported metal-organic frameworks (SURMOFs) has highlighted their potential in developing hybrid electronic devices with exceptional mechanical flexibility, film processability, and cost-effectiveness. However, the low electrical conductivity of SURMOFs has limited their use in devices. To address this, researchers have utilized the porosity of SURMOFs to enhance electrical conductivity by incorporating conductive materials.

View Article and Find Full Text PDF

Organic electrochemical transistors (OECTs) are technologically relevant devices presenting high susceptibility to physical stimulus, chemical functionalization, and shape changes-jointly to versatility and low production costs. The OECT capability of liquid-gating addresses both electrochemical sensing and signal amplification within a single integrated device unit. However, given the organic semiconductor time-consuming doping process and their usual low field-effect mobility, OECTs are frequently considered low-end category devices.

View Article and Find Full Text PDF

The combination of organic and inorganic materials at the nanoscale to form functional hybrid structures is a powerful strategy to develop novel electronic devices. The knowledge on semiconductor thin-film polarization brings direct benefits to the hybrid organic/inorganic electronics, becoming primordial for the development of devices such as electromechanical logic gates, solar cells, miniaturized valves, organic diodes, and molecular supercapacitors, among others. Here, we report on the dielectric polarization of ultrathin organic semiconducting films-.

View Article and Find Full Text PDF

Organic diodes and molecular rectifiers are fundamental electronic devices that share one common feature: current rectification ability. Since both present distinct spatial dimensions and working principles, the rectification of organic diodes is usually achieved by interface engineering, while changes in molecular structures commonly control the molecular rectifiers' features. Here, we report on the first observation of temperature-driven inversion of the rectification direction (IRD) in ensemble molecular diodes (EMDs) prepared in a vertical stack configuration.

View Article and Find Full Text PDF

Surface-Mounted Metal-Organic Frameworks (SURMOFs) are promising materials with a wide range of applications and increasing interest in different technological fields. The use of SURMOFs as both the active and passive tail in electronic devices is one of the most exciting possibilities for such a hybrid material. In such a context, the adhesion, roughness, and crystallinity control of SURMOF thin films are challenging and have limited their application in new functional electronic devices.

View Article and Find Full Text PDF

The effective utilization of vertical organic transistors in high current density applications demands further reduction of channel length (given by the thickness of the organic semiconducting layer and typically reported in the 100 nm range) along with the optimization of the source electrode structure. Here we present a viable solution by applying rolled-up metallic nanomembranes as the drain-electrode (which enables the incorporation of few nanometer-thick semiconductor layers) and by lithographically patterning the source-electrode. Our vertical organic transistors operate at ultra-low voltages and demonstrate high current densities (~0.

View Article and Find Full Text PDF

Nanomembranes (NMs) are freestanding structures with few-nanometer thickness and lateral dimensions up to the microscale. In nanoelectronics, NMs have been used to promote reliable electrical contacts with distinct nanomaterials, such as molecules, quantum dots, and nanowires, as well as to support the comprehension of the condensed matter down to the nanoscale. Here, we propose a tunable device architecture that is capable of deterministically changing both the contact geometry and the current injection in nanoscale electronic junctions.

View Article and Find Full Text PDF

Organic thin-film transistors (OTFTs) are an ever-growing subject of research, powering recent technologies such as flexible and wearable electronics. Currently, many studies are being carried out to push forward the state-of-the-art OTFT technology to achieve characteristics that include high carrier mobility, low power consumption, flexibility, and the ability to operate under harsh conditions. Here, we tackle this task by proposing a novel OTFT architecture exploring the so-called rolled-up nanomembrane technology to fabricate low-voltage (<2 V), ultracompact OTFTs.

View Article and Find Full Text PDF

Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscopy.

View Article and Find Full Text PDF

The combination of organic and inorganic materials to create hybrid nanostructures is an effective approach to develop label-free platforms for biosensing as well as to overcome eventual leakage current-related problems in capacitive sensors operating in liquid. In this work, we combine an ultra-thin high-k dielectric layer (AlO) with a nanostructured organic functional tail to create a platform capable of monitoring biospecific interactions directly in liquid at very low analyte concentrations. As a proof of concept, a reversible label-free glutathione-S-transferase (GST) biosensor is demonstrated.

View Article and Find Full Text PDF

Short-period multilayers containing ultrathin atomic layers of Al embedded in titanium dioxide (TiO(2)) film-here called single-pulse doped multilayers-are fabricated by atomic layer deposition (ALD) growth methods. The approach explored here is to use Al atoms through single-pulsed deposition to locally modify the chemical environment of TiO(2) films, establishing a chemical control over the resistive switching properties of metal/oxide/metal devices. We show that this simple methodology can be employed to produce well-defined and controlled electrical characteristics on oxide thin films without compound segregation.

View Article and Find Full Text PDF

We fabricate inorganic thin film transistors with bending radii of less than 5 μm maintaining their high electronic performance with on-off ratios of more than 10(5) and subthreshold swings of 160 mV/dec. The fabrication technology relies on the roll-up of highly strained semiconducting nanomembranes, which compacts planar transistors into three-dimensional tubular architectures opening intriguing potential for microfluidic applications. Our technique probes the ultimate limit for the bending radius of high performance thin film transistors.

View Article and Find Full Text PDF

Compact rolled-up Co-Cu nanomembranes of high quality with different numbers of windings are realized by strain engineering. A profound analysis of magnetoresistance (MR) is performed for tubes with a single winding and a varied number of Co-Cu bilayers in the stack. Rolled-up nanomembranes with up to 12 Co-Cu bilayers are successfully fabricated by tailoring the strain state of the Cr bottom layer.

View Article and Find Full Text PDF

Here, we demonstrate the fabrication, characterization, and tailoring of porous organic nanomembranes and their direct integration on inorganic substrates for sensing applications. The chemically prepared nanomembranes can be integrated on both conducting and insulating substrates by either transfer or direct synthesis. We also successfully demonstrate their use for the detection of commonly used acids including HCl, H(2)SO(4), or H(3)PO(4) and their respective counterions, chlorides, sulfates, and phosphates.

View Article and Find Full Text PDF

In this work, we combine self-assembly and top-down methods to create hybrid junctions consisting of single organic molecular monolayers sandwiched between metal and/or single-crystalline semiconductor nanomembrane based electrodes. The fabrication process is fully integrative and produces a yield loss of less than 5% on-chip. The nanomembrane-based electrodes guarantee a soft yet robust contact to the molecules where the presence of pinholes and other defects becomes almost irrelevant.

View Article and Find Full Text PDF

A new method for combining top-down and bottom-up approaches to create superconductor-normal metal-superconductor niobium-based Josephson junctions is presented. Using a rolled-up semiconductor nanomembrane as scaffolding, we are able to create mesoscopic gold filament proximity junctions. These are created by electromigration of gold filaments after inducing an electric field mediated breakdown in the semiconductor nanomembrane, which can generate nanometer sized structures merely using conventional optical lithography techniques.

View Article and Find Full Text PDF

The effects of the polymerization temperature and of voltammetric cycling on the chain length and the resistivity of polypyrrole films are investigated. The studies provide further proof for the existence of at least two different types of polypyrrole, the so-called PPy I and PPy II. As the electropolymerization of conjugated systems in contrast to normal polymerization reactions is a fully activated process, the generation of these different types of PPy depends on experimental parameters such as temperature or formation potentials.

View Article and Find Full Text PDF