Aim: Vafidemstat is a brain-penetrant, orally bioavailable, small molecule irreversible inhibitor of the histone lysine-specific demethylase KDM1A (also known as LSD1), which corrects memory deficits and behavior alterations including aggression and social interaction deficits in preclinical models.
Methods: Here, we report the results of REIMAGINE, a phase IIa, single-center, open-label, one-arm basket trial that evaluated the safety and efficacy of vafidemstat on aggression in adult patients with borderline personality disorder (BPD), attention-deficit/hyperactivity disorder (ADHD), and autistic spectrum disorder (ASD). Participants received 1.
Background: Iadademstat is a potent, selective, oral inhibitor of both the enzymatic and scaffolding activities of the transcriptional repressor lysine-specific demethylase 1 (LSD1; also known as KDM1A) that showed promising early activity and safety in a phase 1 trial and strong preclinical synergy with azacitidine in acute myeloid leukaemia cell lines. Therefore, we aimed to investigate the combination of iadademstat and azacitidine for the treatment of adult patients with newly diagnosed acute myeloid leukaemia.
Methods: The open-label, phase 2a, dose-finding ALICE study was conducted at six hospitals in Spain and enrolled patients aged 18 years or older with newly diagnosed acute myeloid leukaemia not eligible for intensive chemotherapy and an ECOG performance status of 0-2.
Lysine specific demethylase 1 (LSD1; also known as KDM1A), is an epigenetic modulator that modifies the histone methylation status. KDM1A forms a part of protein complexes that regulate the expression of genes involved in the onset and progression of diseases such as cancer, central nervous system (CNS) disorders, viral infections, and others. Vafidemstat (ORY-2001) is a clinical stage inhibitor of KDM1A in development for the treatment of neurodegenerative and psychiatric diseases.
View Article and Find Full Text PDFLysine-specific demethylase 1 (LSD1 or KDM1A) is a chromatin modifying enzyme playing a key role in the cell cycle and cell differentiation and proliferation through the demethylation of histones and nonhistone substrates. In addition to its enzymatic activity, LSD1 plays a fundamental scaffolding role as part of transcription silencing complexes such as rest co-repressor (CoREST) and nucleosome remodeling and deacetylase (NuRD). A host of classical amine oxidase inhibitors such as tranylcypromine, pargyline, and phenelzine together with LSD1 tool compounds such as SP-2509 and GSK-LSD1 have been extensively utilized in LSD1 mechanistic cancer studies.
View Article and Find Full Text PDFBackground: Vafidemstat, an inhibitor of the histone lysine-specific demethylase KDM1A, corrects cognition deficits and behavior alterations in rodent models. Here, we report the results from the first-in-human trial of vafidemstat in healthy young and older adult volunteers. A total of 110 volunteers participated: 87 were treated with vafidemstat and 23 with placebo.
View Article and Find Full Text PDFJ Clin Oncol
December 2020
The lysine-specific demethylase KDM1A is a key regulator of stem cell potential in acute myeloid leukemia (AML). ORY-1001 is a highly potent and selective KDM1A inhibitor that induces H3K4me2 accumulation on KDM1A target genes, blast differentiation, and reduction of leukemic stem cell capacity in AML. ORY-1001 exhibits potent synergy with standard-of-care drugs and selective epigenetic inhibitors, reduces growth of an AML xenograft model, and extends survival in a mouse PDX (patient-derived xenograft) model of T cell acute leukemia.
View Article and Find Full Text PDFHistone methylation and demethylation are important processes associated with the regulation of gene transcription, and alterations in histone methylation status have been linked to a large number of human diseases. Initially thought to be an irreversible process, histone methylation is now known to be reversed by two families of proteins containing over 30 members that act to remove methyl groups from specific lysine residues present in the tails of histone H3 and histone H4. A rapidly growing number of reports have implicated the FAD-dependent lysine specific demethylase (KDM1) family in cancer, and several small-molecule inhibitors are in development for the treatment of cancer.
View Article and Find Full Text PDFCurr Opin Pharmacol
August 2015
The covalent modification of histones is closely associated with regulation of gene transcription. Chromatin modifications have been suggested to represent an epigenetic code that is dynamically 'written' and 'erased' by specialized proteins, and 'read', or interpreted, by proteins that translate the code into gene expression changes. Initially thought to be an irreversible process, histone methylation is now known to be reversed by demethylases, FAD dependent amineoxidases and by iron(II)-alpha-ketoglutarate dependent deoxygenases of the Jumonji family.
View Article and Find Full Text PDFParkinson disease (PD) and dementia with Lewy bodies (DLB) are characterized by the accumulation of abnormal alpha-synuclein and ubiquitin in protein aggregates conforming Lewy bodies and Lewy neurites. Ubiquitin C-terminal hydrolase-1 (UCHL-1) disassembles polyubiquitin chains to increase the availability of free monomeric ubiquitin to the ubiquitin proteasome system (UPS) thus favoring protein degradation. Since mutations in the UCHL-1 gene, reducing UPS activity by 50%, have been reported in autosomal dominant PD, and UCHL-1 inhibition results in the formation of alpha-synuclein aggregates in mesencephalic cultured neurons, the present study was initiated to test UCHL-1 mRNA and protein levels in post-mortem frontal cortex (area 8) of PD and DLB cases, compared with age-matched controls.
View Article and Find Full Text PDFThe development of the nervous system (NS) requires the coordinated migration of multiple waves of neurons and subsequent processes of neurite maturation, both involving selective guidance mechanisms. In Caenorhabditis elegans, unc-53 codes for a new multidomain protein involved in the directional migration of a subset of cells. We describe here the first functional characterization of the mouse homologue, mouse Neuron navigator 1 (mNAV1), whose expression is largely restricted to the NS during development.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
October 2004
DNA microarray technology is based on the principle of hybridization between 2 complementary strands of nucleic acids, one being fixed into a solid membrane, the other being the sample to analyze. This has resulted in a very powerful method to examine differential gene expression between samples, and has been widely used in the study of tumors. The application of DNA microarray technology to the study of the nervous system has to consider several properties of the nervous tissue: composition of various neuronal types, as well as astrocytes, oligodendrocytes, and microglia; regional and area differences; developmental and age-dependent variations; and functional and pathological status.
View Article and Find Full Text PDFIn this article we study the proteins responsible for chromatin condensation during spermiogenesis in the cephalopod Octopus vulgaris. The DNA of ripe sperm nuclei in this species is condensed by a set of five different proteins. Four of these proteins are protamines.
View Article and Find Full Text PDFWe have cloned the gene neuron navigator-1 (NAV1), a human homolog of unc-53, a gene involved in axon guidance in Caenorhabditis elegans. Duplications during evolution gave rise to three human homologs located on chromosomes 1q32.1, 11p15.
View Article and Find Full Text PDF