Publications by authors named "Carlos B Rueda"

Paucity of the glucose transporter-1 (Glut1) protein resulting from haploinsufficiency of the SLC2A1 gene arrests cerebral angiogenesis and disrupts brain function to cause Glut1 deficiency syndrome (Glut1 DS). Restoring Glut1 to Glut1 DS model mice prevents disease, but the precise cellular sites of action of the transporter, its temporal requirements, and the mechanisms linking scarcity of the protein to brain cell dysfunction remain poorly understood. Here, we show that Glut1 functions in a cell-autonomous manner in the cerebral microvasculature to affect endothelial tip cells and, thus, brain angiogenesis.

View Article and Find Full Text PDF

GDAP1 is an outer mitochondrial membrane protein involved in Charcot-Marie-Tooth (CMT) disease. Lack of GDAP1 gives rise to altered mitochondrial networks and endoplasmic reticulum (ER)-mitochondrial interactions resulting in a decreased ER-Ca levels along with a defect on store-operated calcium entry (SOCE) related to a misallocation of mitochondria to subplasmalemmal sites. The defect on SOCE is mimicked by MCU silencing or mitochondrial depolarization, which prevent mitochondrial calcium uptake.

View Article and Find Full Text PDF

Haploinsufficiency of the SLC2A1 gene and paucity of its translated product, the glucose transporter-1 (Glut1) protein, disrupt brain function and cause the neurodevelopmental disorder, Glut1 deficiency syndrome (Glut1 DS). There is little to suggest how reduced Glut1 causes cognitive dysfunction and no optimal treatment for Glut1 DS. We used model mice to demonstrate that low Glut1 protein arrests cerebral angiogenesis, resulting in a profound diminution of the brain microvasculature without compromising the blood-brain barrier.

View Article and Find Full Text PDF

Unlabelled: ARALAR/AGC1/Slc25a12, the aspartate-glutamate carrier from brain mitochondria, is the regulatory step in the malate-aspartate NADH shuttle, MAS. MAS is used to oxidize cytosolic NADH in mitochondria, a process required to maintain oxidative glucose utilization. The role of ARALAR was analyzed in two paradigms of glutamate-induced excitotoxicity in cortical neurons: glucose deprivation and acute glutamate stimulation.

View Article and Find Full Text PDF

Glutamate elicits Ca(2+) signals and workloads that regulate neuronal fate both in physiological and pathological circumstances. Oxidative phosphorylation is required in order to respond to the metabolic challenge caused by glutamate. In response to physiological glutamate signals, cytosolic Ca(2+) activates respiration by stimulation of the NADH malate-aspartate shuttle through Ca(2+)-binding to the mitochondrial aspartate/glutamate carrier (Aralar/AGC1/Slc25a12), and by stimulation of adenine nucleotide uptake through Ca(2+) binding to the mitochondrial ATP-Mg/Pi carrier (SCaMC-3/Slc25a23).

View Article and Find Full Text PDF

The ATPase Inhibitory Factor 1 (IF1) is an inhibitor of the mitochondrial H+-ATP synthase that regulates the activity of both oxidative phosphorylation (OXPHOS) and cell death. Here, we have developed transgenic Tet-On and Tet-Off mice that express a mutant active form of hIF1 in the hepatocytes to restrain OXPHOS in the liver to investigate the relevance of mitochondrial activity in hepatocarcinogenesis. The expression of hIF1 promotes the inhibition of OXPHOS in both Tet-On and Tet-Off mouse models and induces a state of metabolic preconditioning guided by the activation of the stress kinases AMPK and p38 MAPK.

View Article and Find Full Text PDF

Glutamate excitotoxicity is caused by sustained activation of neuronal NMDA receptors causing a large Ca(2+) and Na(+) influx, activation of poly(ADP ribose) polymerase-1 (PARP-1), and delayed Ca(2+) deregulation. Mitochondria undergo early changes in membrane potential during excitotoxicity, but their precise role in these events is still controversial. Using primary cortical neurons derived from mice, we show that NMDA exposure results in a rapid fall in mitochondrial ATP in neurons deficient in SCaMC-3/Slc25a23, a Ca(2+)-regulated mitochondrial ATP-Mg/Pi carrier.

View Article and Find Full Text PDF

Calcium is thought to regulate respiration but it is unclear whether this is dependent on the increase in ATP demand caused by any Ca(2+) signal or to Ca(2+) itself. [Na(+)]i, [Ca(2+)]i and [ATP]i dynamics in intact neurons exposed to different workloads in the absence and presence of Ca(2+) clearly showed that Ca(2+)-stimulation of coupled respiration is required to maintain [ATP]i levels. Ca(2+) may regulate respiration by activating metabolite transport in mitochondria from outer face of the inner mitochondrial membrane, or after Ca(2+) entry in mitochondria through the calcium uniporter (MCU).

View Article and Find Full Text PDF

Neuronal respiration is controlled by ATP demand and Ca2+ but the roles played by each are unknown, as any Ca2+ signal also impacts on ATP demand. Ca2+ can control mitochondrial function through Ca2+-regulated mitochondrial carriers, the aspartate-glutamate and ATP-Mg/Pi carriers, ARALAR/AGC1 and SCaMC-3, respectively, or in the matrix after Ca2+ transport through the Ca2+ uniporter. We have studied the role of Ca2+ signaling in the regulation of mitochondrial respiration in intact mouse cortical neurons in basal conditions and in response to increased workload caused by increases in [Na+]cyt (veratridine, high-K+ depolarization) and/or [Ca2+]cyt (carbachol).

View Article and Find Full Text PDF

GDAP1 is an outer mitochondrial membrane protein that acts as a regulator of mitochondrial dynamics. Mutations of the GDAP1 gene cause Charcot-Marie-Tooth (CMT) neuropathy. We show that GDAP1 interacts with the vesicle-organelle trafficking proteins RAB6B and caytaxin, which suggests that GDAP1 may participate in the mitochondrial movement within the cell.

View Article and Find Full Text PDF

It has been known for a long time that mitochondria isolated from hepatocytes treated with glucagon or Ca(2+)-mobilizing agents such as phenylephrine show an increase in their adenine nucleotide (AdN) content, respiratory activity, and calcium retention capacity (CRC). Here, we have studied the role of SCaMC-3/slc25a23, the mitochondrial ATP-Mg/Pi carrier present in adult mouse liver, in the control of mitochondrial AdN levels and respiration in response to Ca(2+) signals as a candidate target of glucagon actions. With the use of SCaMC-3 knock-out (KO) mice, we have found that the carrier is responsible for the accumulation of AdNs in liver mitochondria in a strictly Ca(2+)-dependent way with an S0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfg9h0ev9gcgqmf42obad7esuj0uqrjlj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once