Publications by authors named "Carlos Astete"

Florfenicol (FF) is a widely used antimicrobial in veterinary medicine because of its broad antimicrobial activity, although it has certain limitations and raises concerns about the development of antimicrobial resistance genes. These limitations highlight the need to explore novel drug with controlled release systems to enhance the therapeutic efficacy of FF, while minimizing the potential for resistance development. This study introduces an innovative approach for the design, synthesis, and evaluation of lignin-poly(lactic-co-glycolic) acid (PLGA)-FF nanoparticles.

View Article and Find Full Text PDF

Antioxidant therapies are of interest in the prevention and management of ocular disorders such as cataracts. Although an active area of interest, topical therapy with antioxidants for the treatment of cataracts is complicated by multiple ocular anatomical barriers, product stability, and solubility. Entrapment and delivery of antioxidants with poly(lactic-co-glycolic acid) nanoparticles is a possible solution to these challenges, however, little is known regarding their effects in vitro or in vivo.

View Article and Find Full Text PDF

In this study, we aim to quantify coating uniformity and correlate fluorescence intensity to drug loading for drug-coated angioplasty balloons (DCB) coated with 5, 10, 15, or 20 layers of poly(lactic-co-glycolic acid) nanoparticles (NPs) entrapped with quercetin. Uniformity was quantified from histograms and horizontal line profiles of microscopic fluorescent images acquired with sample specific parameters, and cracks in the coating were measured and counted. The fluorescence of images acquired with global parameters was correlated with quercetin loading measured via gravimetric/HPLC analysis.

View Article and Find Full Text PDF

An efficient and sustainable agriculture calls for the development of novel agrochemical delivery systems able to release agrochemicals in a controlled manner. This study investigated the controlled release of the insecticide methoxyfenozide (MFZ) from lignin (LN) nanoparticles (LNPs). LN-grafted poly(ε-caprolactone) (LN--PCL) polymers were synthesized using two grafting methods, ring-opening polymerization (ROP)(LN--PCL) and acylation reaction (LN--PCL), creating polymers capable of self-assembling into nanoparticles of different properties, without surfactants.

View Article and Find Full Text PDF

As is the case with other veterinary antibiotics, florfenicol (FFC) faces certain limitations, such as low solubility in water, or the fact that it is reported to interfere with the immune response after some immunoprofilactic actions in livestock. Aiming to improve its efficacy and overall performance, FFC was loaded into a polymeric nanobased delivery system by succesfully using the emulsion-evaporation technique. The poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with FFC were characterized in terms of size (101 ± 0.

View Article and Find Full Text PDF

Previous research suggested that positively charged zein nanoparticles [(+)ZNP] were toxic to neonates of Anticarsia gemmatalis Hübner and deleterious to noctuid pests. However, specific modes of action for ZNP have not been elucidated. Diet overlay bioassays attempted to rule out the hypothesis that A.

View Article and Find Full Text PDF

The application of engineered biomaterials for wound healing has been pursued since the beginning of tissue engineering. Here, we attempt to apply functionalized lignin to confer antioxidation to the extracellular microenvironments of wounds and to deliver oxygen from the dissociation of calcium peroxide for enhanced vascularization and healing responses without eliciting inflammatory responses. Elemental analysis showed 17 times higher quantity of calcium in the oxygen-releasing nanoparticles.

View Article and Find Full Text PDF

Significance: Drug-coated angioplasty balloons (DCBs) are used to treat peripheral artery disease, and proper dosage depends on coating characteristics like uniformity and number of layers.

Aim: Quantify coating uniformity and correlate fluorescence intensity to drug loading for DCBs coated with 5, 10, 15, or 20 layers of poly(lactic-co-glycolic acid) nanoparticles (NPs) entrapped with quercetin.

Approach: Images of DCBs were acquired using fluorescence microscopy.

View Article and Find Full Text PDF

This research demonstrates the development, application, and mechanistic value of a multi-detector asymmetric flow field-flow fractionation (AF4) approach to acquire size-resolved drug loading and release profiles from polymeric nanoparticles (NPs). AF4 was hyphenated with multiple online detectors, including dynamic and multi-angle light scattering for NP size and shape factor analysis, fluorescence for drug detection, and total organic carbon (TOC) to quantify the NPs and dissolved polymer in nanoformulations. The method was demonstrated on poly(lactic-co-glycolic acid) (PLGA) NPs loaded with coumarin 6 (C6) as a lipophilic drug surrogate.

View Article and Find Full Text PDF

Peripheral artery disease (PAD) is a systemic vascular disease of the legs that results in a blockage of blood flow from the heart to the lower extremities. Now one of the most common causes of mortality in the U.S.

View Article and Find Full Text PDF

The utilization of poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) with entrapped fish oil (FO) loaded in collagen-based scaffolds for cutaneous wound healing using a porcine model is unique for the present study. Full-depth cutaneous excisions (5 × 5 cm) on the pig dorsa were treated with pure collagen scaffold (control, C), empty PLGA NPs (NP), FO, mupirocin (MUP), PLGA NPs with entrapped FO (NP/FO) and PLGA NPs with entrapped MUP (NP/MUP). The following markers were evaluated on days 0, 3, 7, 14 and 21 post-excision: collagen, hydroxyproline (HP), angiogenesis and expressions of the COX2, EGF, COL1A1, COL1A3, TGFB1, VEGFA, CCL5 and CCR5 genes.

View Article and Find Full Text PDF

Research indicates that nanoparticles can be an effective agricultural pest management tool, though unintended effects on the insect must be evaluated before their use in agroecosystems. Chrysodeixis includens (Walker) was used as a model to evaluate chronic parental and generational exposure to empty, positively charged zein nanoparticles ((+)ZNP) and methoxyfenozide-loaded zein nanoparticles (+)ZNP(MFZ) at low-lethal concentrations. To determine concentration limits, an acute toxic response test on meridic diet evaluated (+)ZNP(MFZ) and technical grade methoxyfenozide using two diet assay techniques.

View Article and Find Full Text PDF

The majority of published research on the effect of engineered nanoparticles on terrestrial plant species is focused on inorganic nanoparticles, with the effects of organic polymeric nanoparticles (NP) on plants remaining largely unexplored. It is critical to understand the impact of polymeric NPs on plants if these particles are to be used as agrochemical delivery systems. This study investigates the effect of biodegradable polymeric lignin-based nanoparticles (LNPs) and zein nanoparticles (ZNP) on soybean plant health.

View Article and Find Full Text PDF

Polymeric nanoparticles (NPs) are typically designed to enhance the efficiency of drug delivery by controlling the drug release rate. Hence, it is critical to obtain an accurate drug release profile. This study presents the first application of asymmetric flow field-flow fractionation (AF4) with fluorescence detection (FLD) to quantify release profiles of fluorescent drugs from polymeric NPs, specifically poly(lactic-co-glycolic acid) NPs loaded with enrofloxacin (PLGA-Enro NPs).

View Article and Find Full Text PDF

Polymeric nanoparticles have been investigated as potential delivery systems for therapeutic compounds to address many ailments including eye disease. The stability and spatiotemporal distribution of polymeric nanoparticles in the eye are important regarding the practical applicability and efficacy of the delivery system in treating eye disease. We selected poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with lutein, a carotenoid antioxidant associated with eye health, as our model ophthalmic nanodelivery system and evaluated its stability when suspended in various conditions involving temperature and light exposure.

View Article and Find Full Text PDF

Poor bioavailability of antibiotics, toxicity, and development of antibiotic-resistant bacteria jeopardize antibiotic treatments. To circumvent these issues, drug delivery using nanocarriers are highlighted to secure the future of antibiotic treatments. This work investigated application of nanocarriers, to prevent and treat bacterial infection, presenting minimal toxicity to the IPEC-J2 cell line.

View Article and Find Full Text PDF

The field of veterinary medicine needs new solutions to address the current challenges of antibiotic resistance and the need for increased animal production. In response, a multitude of delivery systems have been developed in the last 20 years in the form of engineered nanoparticles (ENPs), a subclass of which are polymeric, biodegradable ENPs, that are biocompatible and biodegradable (pbENPs). These platforms have been developed to deliver cargo, such as antibiotics, vaccines, and hormones, and in general, have been shown to be beneficial in many regards, particularly when comparing the efficacy of the delivered drugs to that of the conventional drug applications.

View Article and Find Full Text PDF

A meridic diet overlay bioassay using empty, positively charged zein nanoparticles ((+)ZNP) was performed on soybean looper (Chrysodeixis includens (Walker)), tobacco budworm (Heliothis virescens (F.)), and velvetbean caterpillar (Anticarsia gemmatalis Hübner) (Lepidoptera: Noctuidae). Assessment of effects on mortality and development weights 7 d after ingestion of (+)ZNP were evaluated on larvae of each species.

View Article and Find Full Text PDF

A lignin-graft-poly(lactic--glycolic) acid (PLGA) biopolymer was synthesized with two types of lignin (LGN), alkaline lignin (ALGN) and sodium lignosulfonate (SLGN), at different (A/S)LGN/PLGA ratios (1:2, 1:4, and 1:6 w/w). H NMR and Fourier-transform infrared spectroscopy (FT-IR) confirmed the conjugation of PLGA to LGN. The (A/S)LGN-graft-PLGA biopolymers were used to form nanodelivery systems suitable for entrapment and delivery of drugs for disease treatment.

View Article and Find Full Text PDF

Few targeted therapies are available for triple-negative breast cancer (TNBC) patients. Here, we propose a novel alkaline-lignin-conjugated-poly(lactic--glycolic acid) (L-PLGA) nanoparticle drug delivery system to improve the efficacy of targeted therapies.  L-PLGA nanoparticles (NPs) loaded with the MEK1/2 inhibitor GDC-0623 were characterized, tested on MDA-MB-231 TNBC cell line and compared with loaded PLGA NPs.

View Article and Find Full Text PDF

Three-dimensional matrices of collagen type I (Col I) are widely used in tissue engineering applications for its abundance in many tissues, bioactivity with many cell types, and excellent biocompatibility. Inspired by the structural role of lignin in a plant tissue, we found that sodium lignosulfonate (SLS) and an alkali-extracted lignin from switchgrass (SG) increased the stiffness of Col I gels. SLS and SG enhanced the stiffness of Col I gels from 52 to 670 Pa and 52 to 320 Pa, respectively, and attenuated shear-thinning properties, with the formulation of 1.

View Article and Find Full Text PDF

Cataracts are responsible for half of the world blindness, surgery being the only viable treatment. Lutein, a naturally occurring carotenoid in the eye, has the potential to reduce cataract progression by protecting the eye from photo-oxidative stress. To restore the eye's natural line of defense against photo-oxidative stress, a formulation was developed using zein and poly(lactic-co-glycolic acid) nanoparticles (NPs) embedded in an optimized bioadhesive thermosensitive gel for the delivery of lutein via topical application.

View Article and Find Full Text PDF

Peripheral artery disease is a cardiovascular disease characterized by a narrowing of arteries that supply blood to the extremities, particularly, the legs. When surgical intervention is warranted, the primary approach is balloon angioplasty. Drug coated balloons (DCB) designed to release antimitogenic agents to the site of the blockage are a relatively new product aimed at reducing artery re-narrowing, or restenosis, after intervention.

View Article and Find Full Text PDF

In the interest of developing and characterizing a polymeric nanoparticle pesticide delivery vehicle to soybeans, zein nanoparticle (ZNP) uptake by the roots and biodistribution to the leaves of soybean plants was measured. Zein was tagged with fluorescein isothiocyanate (FITC) and made into nanoparticles (135 ± 3 nm diameter. 0.

View Article and Find Full Text PDF