Many previous studies on the mechanical properties of Parasagittal Bridging Veins (PSBVs) found that strain rate had a significant effect on some mechanical properties, but did not extensively study the viscoelastic effects, which are difficult to detect with uniaxial simple tensile tests. In this study, relaxation tests and tests under cyclic loading were performed, and it was found that PSBVs do indeed exhibit clear viscoelastic effects. In addition, a complete viscoelastic model for the PSBVs is proposed and data from relaxation, cyclic load and load-unload tests for triangular loads are used to find reference values that characterize the viscoelastic behavior of the PSBVs.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
April 2021
A large number of post mortem human subjects was used to investigate the relation between the micro-structure of rib cortical bone and the mechanical properties using Fractal Dimension. Uniaxial tensile tests were performed on coupons of rib cortical bone. Tensile strength, yield stress, Young's Modulus, maximum strain, and work to fracture were determined for each coupon.
View Article and Find Full Text PDFDetermining the time of injury is an important but still a challenging task in forensic anthropology. In literature, many descriptions can be found to make a distinction between perimortem and postmortem fractures. Characteristics that are more related to fractures in fresh conditions, however, are not extensively investigated.
View Article and Find Full Text PDFIntroduction: There are several studies about M1 type vehicle-pedestrian collision injury pattern, and based on them, there has been several changes in automobiles for pedestrian protection. However, the lack of sufficient studies about injury pattern in motorbikes-pedestrian collisions leads to a lack of optimization design of these vehicles. The objective of this research is to study the injury pattern of pedestrians involved in collisions with motorized two-wheeled vehicles.
View Article and Find Full Text PDFIntroduction: Pedestrian-vehicle collisions are a leading cause of death among motor vehicle accidents. Recently, pedestrian injury research has been increased, mostly due to the implementation of European and Japanese regulations. This research presents an analysis of the main head injury vehicle sources and injury mechanisms observed in the field, posteriorly the data are compared with the current pedestrian regulations.
View Article and Find Full Text PDFTraffic Inj Prev
May 2015
Objectives: Perform a systematic review for the most relevant pelvic injury research involving PMHS. The review begins with an explanation of the pelvic anatomy and a general description of pelvic fracture patterns followed by the particular case of pelvic fractures sustained in pedestrian-vehicle collisions. Field data documenting the vehicle, crash, and human risk factors for pedestrian pelvic injuries are assessed.
View Article and Find Full Text PDFObjective: The objective of this study is to assess the response of postmortem human subjects (PMHS) to a large-volume side air bag in a fully instrumented and well-controlled side impact test condition.
Methods: Three adult male PMHS were subjected to right-side pure lateral impacts. Each stationary seated subject was struck at 4.
The goal of this study was to determine material properties for the anterior cortex and subcortical regions of human patellae and relate those properties to mineral density and fractal dimension of the bone. Ten human patellae were obtained from eight fresh frozen human cadavers and subjected to anteriorly-directed spherical indentation-relaxation experiments using two different sized indenters to two different indentation depths. Response data were fit to a three-mode viscoelastic model obtained through elastic-viscoelastic correspondence of the Hertzian contact relation for spherical indentation.
View Article and Find Full Text PDFWhile belt usage among rear-seat passengers is disproportionately lower than their front-seat counterpart, this may have serious consequences in the event of a crash not only for the unbelted rear-seat passenger but also for the front-seat passengers as well. To quantify that effect, the objective of the study is to evaluate the increased likelihood of driver fatality in the presence of unrestrained rear-seat passengers in a severe frontal collision. U.
View Article and Find Full Text PDFRear-impact collisions at low speed are a leading cause of economic costs among motor vehicle accidents. Recently, EuroNCAP has incorporated in its protocol the whiplash test, to reproduce a low-speed rear impact. This paper presents a field driving study to assess the potential differences between the EuroNCAP dummy tests and actual drivers in the field, focusing on occupant position and biomechanics experimental results.
View Article and Find Full Text PDFThe costal-cartilage in the human ribcage is a composite structure consisting of a cartilage substance surrounded by a fibrous, tendon-like perichondrium. Current computational models of the human ribcage represent the costal-cartilage as a homogeneous material, with no consideration for the mechanical contributions of the perichondrium. This study sought to investigate the role of the perichondrium in the structural mechanical behavior of the costal-cartilage.
View Article and Find Full Text PDFObjective: The objectives of this study were to examine the axial response of the clavicle under quasistatic compressions replicating the body boundary conditions and to quantify the sensitivity of finite element-predicted fracture in the clavicle to several parameters.
Methods: Clavicles were harvested from 14 donors (age range 14-56 years). Quasistatic axial compression tests were performed using a custom rig designed to replicate in situ boundary conditions.
Biomed Sci Instrum
February 2016
The goal of this study was to investigate the response and failure properties of the human sternum under bending loading. Nine sternum specimens from post mortem human surrogates (n=7 male, n=2 female, age: 62.7 +/- 10.
View Article and Find Full Text PDFThis study presents the results of indentation tests on the superior vertebral endplate of the 4th lumbar vertebra (L4) of eleven male cadaveric subjects (65 +/- 7 years). Three locations on the superior endplate surface were loaded with a 7.9 mm spherical indentor at either a low (1 mm/s) or high (1000 mm/s) rate.
View Article and Find Full Text PDFBiomed Sci Instrum
February 2016
The purpose of this study was to investigate the magnitude of bending moment that results in fracture of the pedicles when lumbar vertebrae are loaded in four-point bending. Nine human second lumbar vertebrae (L2) were harvested from donors aged 59-75 years. The specimens were potted and then subjected to quasi-static sagittal-plane four-point bending, which allowed for a constant bending moment applied over a 3.
View Article and Find Full Text PDFA 49-year-old male pedestrian was fatally injured when an overloaded truck backed over him and two of the truck's rear wheels rolled over his chest. An analysis is presented to estimate whether or not the subject would have been severely injured if the truck had been loaded to the maximum-permitted weight. The magnitude of compression of the subject's chest is predicted both for the case weight and the maximum-permitted weight of the vehicle.
View Article and Find Full Text PDF