Many epidemiological models and algorithms are used to fit the parameters of a given epidemic curve. On many occasions, fitting algorithms are interleaved with the actual epidemic models, which yields combinations of model-parameters that are hard to compare among themselves. Here, we provide a model-agnostic framework for epidemic parameter fitting that can (fairly) compare different epidemic models without jeopardizing the quality of the fitted parameters.
View Article and Find Full Text PDFWe present an approach to improve the accuracy-interpretability trade-off of Machine Learning (ML) Decision Trees (DTs). In particular, we apply Maximum Satisfiability technology to compute Minimum Pure DTs (MPDTs). We improve the runtime of previous approaches and, show that these MPDTs can outperform the accuracy of DTs generated with the ML framework .
View Article and Find Full Text PDF