Publications by authors named "Carlos Amero"

Cataracts are diseases characterized by the opacity of the ocular lens and the subsequent deterioration of vision. Metal ions are one of the factors that have been reported to induce crystallin aggregation. For HγS crystallin, several equivalent ratios of Cu(II) promote protein aggregation.

View Article and Find Full Text PDF

Light chain amyloidosis is the most common form of systemic amyloidosis. This disease is caused by the formation and deposition of amyloid fibers made from immunoglobulin light chains. Environmental conditions such as pH and temperature can affect protein structure and induce the development of these fibers.

View Article and Find Full Text PDF

Small heat shock proteins (sHsps) are present in all domains of life. These proteins are responsible for binding unfolded proteins to prevent their aggregation. sHsps form dynamic oligomers of different sizes and constitute transient reservoirs for folding competent proteins that are subsequently refolded by ATP-dependent chaperone systems.

View Article and Find Full Text PDF

Cataracts are defined as the clouding of the lens due to the formation of insoluble protein aggregates. Metal ions exposure has been recognized as a risk factor in the cataract formation process. The γ and β crystallins are members of a larger family and share several structural features.

View Article and Find Full Text PDF

Experimental methods are indispensable for the study of the function of biological macromolecules, not just as static structures, but as dynamic systems that change conformation, bind partners, perform reactions, and respond to different stimulus. However, providing a detailed structural interpretation of the results is often a very challenging task. While experimental and computational methods are often considered as two different and separate approaches, the power and utility of combining both is undeniable.

View Article and Find Full Text PDF

Mechanistic understanding of DNA recombination in the Cre system has largely been guided by crystallographic structures of tetrameric synaptic complexes. Those studies have suggested a role for protein conformational dynamics that has not been well characterized at the atomic level. We used solution nuclear magnetic resonance (NMR) spectroscopy to discover the link between intrinsic flexibility and function in Cre recombinase.

View Article and Find Full Text PDF

Cataract formation is a slow accumulative process due to protein aggregates promoted by different factors over time. Zinc and copper ions have been reported to induce the formation of aggregates opaque to light in the human gamma D crystallin (HγD) in a concentration and temperature dependent manner. In order to gain insight into the mechanism of metal-induced aggregation of HγD under conditions that mimic more closely the slow, accumulative process of the disease, we have studied the non-equilibrium process with the minimal metal dose that triggers HγD aggregation.

View Article and Find Full Text PDF

Light-chain amyloidosis (AL) is one of the most common systemic amyloidoses, and it is characterized by the deposition of immunoglobulin light chain (LC) variable domains as insoluble amyloid fibers in vital organs and tissues. The recombinant protein 6aJL2-R24G contains λ6a and JL2 germline genes and also contains the Arg24 by Gly substitution. This mutation is present in 25% of all amyloid-associated λ6 LC cases, reduces protein stability, and increases the propensity to form amyloid fibers.

View Article and Find Full Text PDF

Light chain amyloidosis is one of the most common systemic amyloidosis, characterized by the deposition of immunoglobulin light variable domain as insoluble amyloid fibrils in vital organs, leading to the death of patients. Germline λ6a is closely related with this disease and has been reported that 25% of proteins encoded by this germline have a change at position 24 where an Arg is replaced by a Gly (R24G). This germline variant reduces protein stability and increases the propensity to form amyloid fibrils.

View Article and Find Full Text PDF

Light-chain amyloidosis (AL) is the most common systemic amyloidosis and is caused by the deposition of mainly insoluble immunoglobulin light chain amyloid fibrils in multiple organs, causing organ failure and eventually death. The germ-line λ6a has been implicated in AL, where a single point mutant at amino acid 24 (6aJL2-R24G) has been observed in around 25% of patient samples. Structural analysis has shown only subtle differences between both proteins; nevertheless, 6aJL2-R24G is more prone to form amyloid fibrils.

View Article and Find Full Text PDF

The spread of multidrug resistant bacteria owing to the intensive use of antibiotics is challenging current antibiotic therapies, and making the discovery and evaluation of new antimicrobial agents a high priority. The evaluation of novel peptide sequences of predicted antimicrobial peptides from different sources is valuable approach to identify alternative antibiotic leads. Two strategies were pursued in this study to evaluate novel antimicrobial peptides from the human β-defensin family (hBD).

View Article and Find Full Text PDF
Article Synopsis
  • The E1B 55kDa protein made by a specific virus helps the virus replicate and grow inside human cells.
  • It’s thought to help control how the virus and the cell make genes, but scientists still don’t fully understand how it works.
  • Recent studies showed that this protein does interact with RNA during a viral infection, which is important for making the virus's DNA and RNA effectively.
View Article and Find Full Text PDF

Late embryogenesis abundant (LEA) proteins accumulate in plants during adverse conditions and their main attributed function is to confer tolerance to stress. One of the deleterious effects of the adverse environment is the accumulation of metal ions to levels that generate reactive oxygen species, compromising the survival of cells. AtLEA4-5, a member of group 4 of LEAs in , is an intrinsically disordered protein.

View Article and Find Full Text PDF

Sea anemone venom is rich in bioactive compounds, including peptides containing multiple disulfide bridges. In a transcriptomic study on Oulactis sp., we identified the putative 36-residue peptide, OspTx2b, which is an isoform of the K channel blocker OspTx2a (Sunanda P et al.

View Article and Find Full Text PDF

Solvent conditions modulate the expression of the amyloidogenic potential of proteins. In this work the effect of pH on the fibrillogenic behavior and the conformational properties of 6aJL2, a model protein of the highly amyloidogenic variable light chain λ6a gene segment, was examined. Ordered aggregates showing the ultrastructural and spectroscopic properties observed in amyloid fibrils were formed in the 2.

View Article and Find Full Text PDF

The spontaneous formation of biological higher-order structures from smaller building blocks, called self-assembly, is a fundamental attribute of life. Although the protein self-assembly is a time-dependent process that occurs at the molecular level, its current understanding originates either from static structures of trapped intermediates or from modeling. Nuclear magnetic resonance (NMR) spectroscopy has the unique ability to monitor structural changes in real time; however, its size limitation and time-resolution constraints remain a challenge when studying the self-assembly of large biological particles.

View Article and Find Full Text PDF

The heterologous expression and characterization of a Hormone-Sensitive Lipases (HSL) esterase (BaEstB) from the Basidiomycete fungus Bjerkandera adusta is reported for the first time. According to structural analysis, amino acid similarities and conservation of particular motifs, it was established that this enzyme belongs to the (HSL) family. The cDNA sequence consisted of 969 nucleotides, while the gene comprised 1133, including three introns of 57, 50, and 57 nucleotides.

View Article and Find Full Text PDF

Cataract is the leading cause of blindness in the world. It results from aggregation of eye lens proteins into high-molecular-weight complexes, causing light scattering and lens opacity. Copper and zinc concentrations in cataractous lens are increased significantly relative to a healthy lens, and a variety of experimental and epidemiological studies implicate metals as potential etiological agents for cataract.

View Article and Find Full Text PDF

Light chain amyloidosis (AL) is a deadly disease characterized by the deposition of monoclonal immunoglobulin light chains as insoluble amyloid fibrils in different organs and tissues. Germ line λ VI has been closely related to this condition; moreover, the R24G mutation is present in 25% of the proteins of this germ line in AL patients. In this work, five small molecules were tested as inhibitors of the formation of amyloid fibrils from the 6aJL2-R24G protein.

View Article and Find Full Text PDF

Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is one of the most common chronic diseases, affecting over 300 million people worldwide. One of the hallmarks of T2D is the presence of amyloid deposits of human islet amyloid polypeptide (IAPP) in the islets of Langerhans of pancreatic β-cells. Recent reports indicate that Cu(II) can inhibit the aggregation of human IAPP, although the mechanism for this inhibitory effect is not clear.

View Article and Find Full Text PDF

AL amyloidosis is the most common amyloid systemic disease and it is characterized by the deposition of immunoglobulin light chain amyloid fibers in different organs, causing organ failure. The immunoglobulin light chain germinal line 6a has been observed to over-express in AL patients, moreover, it was observed that, out of these amyloidogenic proteins, 25% present a mutation of an Arg to Gly in position 24. In vitro studies have shown that this mutation produces proteins with a higher amyloid fiber propensity.

View Article and Find Full Text PDF

Late embryogenesis-abundant proteins accumulate to high levels in dry seeds. Some of them also accumulate in response to water deficit in vegetative tissues, which leads to a remarkable association between their presence and low water availability conditions. A major sub-group of these proteins, also known as typical LEA proteins, shows high hydrophilicity and a high percentage of glycine and other small amino acid residues, distinctive physicochemical properties that predict a high content of structural disorder.

View Article and Find Full Text PDF

Primary amyloidosis (AL) is the most common amyloid systemic disease and it is characterized by the deposition of immunoglobulin light-chain amyloid fibers in different organs, causing organ failure. The germ-line lambda 3 immunoglobulin light-chain proteins have been correlated with the AL condition. Two mutants have been derived from this germ-line, the single mutant C34Y (3rC) and the triple mutant C34Y, W35A and P7D (3rCWP), presenting a remarkable difference in amyloid fibril formation propensities in vitro.

View Article and Find Full Text PDF

Hunter-killer peptides combine two activities in a single polypeptide that work in an independent fashion like many other multi-functional, multi-domain proteins. We hypothesize that emergent functions may result from the combination of two or more activities in a single protein domain and that could be a mechanism selected in nature to form moonlighting proteins. We designed moonlighting peptides using the two mechanisms proposed to be involved in the evolution of such molecules (i.

View Article and Find Full Text PDF