Biofilter systems coupling with microbial electrochemical technology can enhance the removal performance of pollutants. In this study, two types of coke (PK-A and PK-LSN) were used as electroconductive substrates in biofilter systems with silicone tubings. The results showed that the silicone tubings were beneficial for removing NH-N.
View Article and Find Full Text PDFFront Microbiol
April 2022
A METland is an innovative treatment wetland (TW) that relies on the stimulation of electroactive bacteria (EAB) to enhance the degradation of pollutants. The METland is designed in a short-circuit mode (in the absence of an external circuit) using an electroconductive bed capable of accepting electrons from the microbial metabolism of pollutants. Although METlands are proven to be highly efficient in removing organic pollutants, the study of EAB activity in full-scale systems is a challenge due to the absence of a two-electrode configuration.
View Article and Find Full Text PDFThe use of constructed wetlands (CWs) is a promising approach for the remediation of hydrocarbon-polluted wastewater. The amendments of CWs with nutrients, surfactants, and aeration enhances the removal of pollutants from wastewater. The objective of the present study was to explore the effect of external stimulants, i.
View Article and Find Full Text PDFConstructed wetlands are an effective biofilter-based technology for treating wastewater in a sustainable way; however, their main disadvantage is a large area footprint. To cope with this limitation a new generation of constructed wetlands, the METlands®, have been recently reported. METlands® replace gravel with a granular electrically conductive material to enhance the oxidative metabolisms of electroactive bacteria by facilitating the flux of electron through the material and, consequently, increase bioremediation rates.
View Article and Find Full Text PDFThe performance of constructed wetlands (CW) can be enhanced through the use of microbial electrochemical technologies like METland systems. Given its novelty, uncertainties exist regarding processes responsible for the pollutant removal and microbial activity within the systems. Genetic characterization of microbial communities of METlands is desirable, but it is a time and resource consuming.
View Article and Find Full Text PDFConstructed wetlands (CWs) performance enhancement can be done with intensification strategies. A recent strategy still in study is the coupling with Microbial Electrochemical Technologies (MET). An alternative system using electro-conductive biofilters instead of electrodes and circuits used in MET, resulted in the development of a Microbial Electrochemical-based CW (METland).
View Article and Find Full Text PDFConstructed wetlands (CWs) are an eco-friendly and cost-effective technology to remove organic micro-pollutants (OMPs) from wastewater. The support matrix is an important component in CWs as it has a primary role in the growth and development of plants and microbes. However, the roles of the support matrix in CWs in removing OMPs have not been systematically studied.
View Article and Find Full Text PDF