We use the model system as a vehicle to study the origin and propagation of surface nano-ridges in plant petal epidermal cells by tracking the development of the cell shape and the cuticle. In this system, the cuticle develops two distinct sub-layers, (i) an uppermost layer which increases in thickness and in-plane extension and (ii) a substrate, composed of cuticular and cell wall material. We quantify the pattern formation and geometrical changes and then postulate a mechanical model assuming that the cuticle behaves as a growing bi-layer.
View Article and Find Full Text PDFMany cytoskeletal systems are now sufficiently well known to permit their precise quantitative modeling. Microtubule and actin filaments are well characterized, and the associated proteins are often known, as well as their abundance and the interactions between these elements. Thus, computer simulations can be used to investigate the collective behavior of the system precisely, in a way that is complementary to experiments.
View Article and Find Full Text PDFMany species have cuticular striations that play a range of roles, from pollinator attraction to surface wettability. In Hibiscus trionum, the striations span multiple cells at the base of the petal to form a pattern that produces a type of iridescence. It is postulated, using theoretical models, that the pattern of striations could result from mechanical instabilities.
View Article and Find Full Text PDFDespite the important role of electromechanical alternans in cardiac arrhythmogenesis, its molecular origin is not well understood. The appearance of calcium alternans has often been associated to fluctuations in the sarcoplasmic reticulum (SR) Ca loading. However, cytosolic calcium alternans observed without concurrent oscillations in the SR Ca content suggests an alternative mechanism related to a dysfunction in the dynamics of the ryanodine receptor (RyR2).
View Article and Find Full Text PDFWe use spatial models of simple predator-prey interactions to predict that predator and prey numbers oscillate in time and space. These oscillations are not seen in the deterministic versions of the models, but are due to stochastic fluctuations about the time-independent solutions of the deterministic equations which are amplified due to the existence of a resonance. We calculate the power spectra of the fluctuations analytically and show that they agree well with results obtained from stochastic simulations.
View Article and Find Full Text PDFWe explore the consequences of modifying the way in which species are defined in an evolutionary food web model. In the original version of the model, the species were defined in terms of a fixed number of features, chosen from a large number of possibilities. These features represented phenotypic and behavioural characteristics of the species.
View Article and Find Full Text PDF