Publications by authors named "Carlos A Gartner"

Common neuropathologies associated with dementia include Alzheimer's disease neuropathologic change (ADNC) and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC). Biofluid proteomics provides a window into the pathobiology of dementia and the information from biofluid tests may help guide clinical management. Participants (n = 29) had been autopsied and had antemortem CSF draws in a longitudinal cohort of older adults at the University of Kentucky AD Research Center.

View Article and Find Full Text PDF

Objective: Our goal was to isolate purified mitochondria from mouse skeletal muscle using a Percoll density gradient and to assess bioenergetic function and purity via Seahorse Extracellular Flux (XF) Analyses and mass spectrometry.

Results: Mitochondria isolated from murine quadriceps femoris skeletal muscle using a Percoll density gradient method allowed for minimally contaminated preparations with time from tissue harvest to mitochondrial isolation and quantification in about 3-4 h. Percoll purification from 100 to 200 mg fresh tissue yielded ~ 200-400 ug protein.

View Article and Find Full Text PDF

Background: Common neuropathologies associated with dementia include Alzheimer's disease neuropathologic change (ADNC) and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC). Biofluid proteomics provides a window into the pathobiology of dementia and the information from biofluid tests may help guide clinical management.

Methods: Participants were recruited from a longitudinal cohort of older adults at the University of Kentucky AD Research Center.

View Article and Find Full Text PDF

Objective: Our goal was to isolate purified mitochondria from mouse skeletal muscle using a Percoll density gradient and to assess bioenergetic function and purity via Seahorse Extracellular Flux (XF) Analyses and mass spectrometry.

Results: Mitochondria isolated from murine quadriceps femoris skeletal muscle using a Percoll density gradient method allowed for minimally contaminated preparations with time from tissue harvest to mitochondrial isolation and quantification in about 3-4 hours. Percoll purification from 100-200 mg fresh tissue yielded ∼200-400 ug protein.

View Article and Find Full Text PDF

The unique properties of the bone marrow (BM) allow for migration and proliferation of multiple myeloma (MM) cells while also providing the perfect environment for development of quiescent, drug-resistant MM cell clones. BM adipocytes (BMAds) have recently been identified as important contributors to systemic adipokine levels, bone strength, hematopoiesis, and progression of metastatic and primary BM cancers, such as MM. Recent studies in myeloma suggest that BMAds can be reprogrammed by tumor cells to contribute to myeloma-induced bone disease, and, reciprocally, BMAds support MM cells .

View Article and Find Full Text PDF

A series of studies comparing the performance of alternating current electrospray ionization (AC ESI) mass spectrometry (MS) and direct current electrospray ionization (DC ESI) MS have been conducted, exploring the absolute signal intensity and signal-to-background ratios produced by both methods using caffeine and a model peptide as targets. Because the high-voltage AC signal was more susceptible to generating gas discharges, the operating voltage range of AC ESI was significantly smaller than that for DC ESI, such that the absolute signal intensities produced by DC ESI at peak voltages were one to two orders of magnitude greater than those for AC ESI. Using an electronegative nebulizing gas, sulfur hexafluoride (SF6), instead of nitrogen (N2) increased the operating range of AC ESI by ~50%, but did not appreciably improve signal intensities.

View Article and Find Full Text PDF

FBXO25 is one of the 68 human F-box proteins that serve as specificity factors for a family of ubiquitin ligases composed of s-phase-kinase associated protein 1, really interesting new gene-box 1, Cullin 1, and F-box protein (SCF1) that are involved in targeting proteins for destruction across the ubiquitin proteasome system. We recently reported that the FBXO25 protein accumulates in novel subnuclear structures named FBXO25-associated nuclear domains (FAND). Combining two-step affinity purification followed by MS with a classical two-hybrid screen, we identified 132 novel potential FBXO25 interacting partners.

View Article and Find Full Text PDF

Insulin stimulates the translocation of intracellular GLUT4 to the plasma membrane where it functions in adipose and muscle tissue to clear glucose from circulation. The pathway and regulation of GLUT4 trafficking are complicated and incompletely understood and are likely to be contingent upon the various proteins other than GLUT4 that comprise and interact with GLUT4-containing vesicles. Moreover, not all GLUT4 intracellular pools are insulin-responsive as some represent precursor compartments, thus posing a biochemical challenge to the purification and characterization of their content.

View Article and Find Full Text PDF

Activity-based protein profiling has emerged as a valuable technology for labeling, enriching, and assessing protein activities from complex mixtures. This is primarily accomplished via a two-step identification and quantification process. Here we show a highly quantitative and streamlined method, termed catch-and-release activity profiling of enzymes (CAPE), which reduces this procedure to a single step.

View Article and Find Full Text PDF

The relative quantification of protein expression levels in different cell samples through the utilization of stable isotope dilution has become a standard method in the field of proteomics. We describe here the development of a new reductively cleavable reagent which facilitates the relative quantification of thousands of proteins from only tens of micrograms of starting protein. The ligand features a novel disulfide moiety that links biotin and a thiol-reactive entity.

View Article and Find Full Text PDF

Cytochrome P450 3A4 is a drug-metabolizing enzyme of extraordinarily broad substrate specificity. This quality imparts upon the enzyme special importance in understanding its determinants of activity and substrate recognition. Limited successes in P450 3A4 active-site structure studies have been achieved by use of mechanism-based inactivators and photoaffinity ligands.

View Article and Find Full Text PDF

While photoaffinity ligands (PALs) have been widely used to probe the structures of many receptors and transporters, their effective use in the study of membrane-bound cytochrome P450s is less established. Here, lapachenole has been used as an effective photoaffinity ligand of human P450 3A4, and mass spectrometry data demonstrating the efficient and specific photoaffinity labeling of CYP3A4 by this naturally occurring benzochromene compound is presented. Without photolysis, lapachenole is a substrate of CYP3A4 and can be metabolized to hydroxylated products by this enzyme.

View Article and Find Full Text PDF

While photoaffinity ligands have been widely used to probe the structures of many receptors and nucleic acid binding proteins, their effective use in the study of cytochrome p450 structure is less established. Nevertheless, significant advances in this field have been made since the technique was first applied to p450cam in 1979. In several cases, especially studies involving p450s of the 1A and 2B families, peptides covalently modified with photoaffinity ligands have been isolated and characterized.

View Article and Find Full Text PDF