In this study, we develop a comprehensive model to investigate the intricate relationship between the bone remodeling process, tumor growth, and bone diseases such as multiple myeloma. By analyzing different scenarios within the Basic Multicellular Unit, we uncover the dynamic interplay between remodeling and tumor progression. The model developed developed in the paper are based on the well accepted Komarova's and Ayati's models for the bone remodeling process, then these models were modified to include the effects of the tumor growth.
View Article and Find Full Text PDFIn this paper, we explore the effects of biological (pathological) and mechanical damage on bone tissue within a benchmark model. Using the Finite Element Methodology, we analyze and numerically test the model's components, capabilities, and performance under physiologically and pathologically relevant conditions. Our findings demonstrate the model's effectiveness in simulating bone remodeling processes and self-repair mechanisms for micro-damage induced by biological internal conditions and mechanical external ones within bone tissue.
View Article and Find Full Text PDFUltra-Clean-Air (UCA) operating theatres aim to minimise surgical instrument contamination and wound infection through high flow rates of ultra-clean air, reducing the presence of Microbe Carrying Particles (MCPs). This study investigates the airflow patterns and ventilation characteristics of a UCA operating theatre (OT) under standard ventilation system operating conditions, considering both empty and partially occupied scenarios. Utilising a precise computational model, quasi-Direct Numerical Simulations (qDNS) were conducted to delineate flow velocity profiles, energy spectra, distributions of turbulent kinetic energy, energy dissipation rate, local Kolmogorov scales, and pressure-based coherent structures.
View Article and Find Full Text PDFThis paper aims to present a comprehensive framework for coupling tumor-bone remodeling processes in a 2-dimensional geometry. This is achieved by introducing a bio-inspired damage that represents the growing tumor, which subsequently affects the main populations involved in the remodeling process, namely, osteoclasts, osteoblasts, and bone tissue. The model is constructed using a set of differential equations based on the Komarova's and Ayati's models, modified to incorporate the bio-inspired damage that may result in tumor mass formation.
View Article and Find Full Text PDFGlyoxal-derived advanced glycation end-products (AGEs) are formed in physiological systems affecting protein/peptide function and structure. These AGEs are generated during aging and chronic diseases such as diabetes and are considered arginine glycating agents. Thus, the study of glyoxal-derived AGEs in lysine residues and amino acid competition is addressed here using acetylated and non-acetylated undecapeptides, with one arginine and one lysine residue available for glycation.
View Article and Find Full Text PDFGlycation is a post-translational modification (PTM) that affects the physiological properties of peptides and proteins. In particular, during hyperglycaemia, glycation by α-dicarbonyl compounds generate α-dicarbonyl-derived glycation products also called α-dicarbonyl-derived advanced glycation end products. Glycation by the α-dicarbonyl compound known as glyoxal was studied in model peptides by MS/MS using a Fourier transform ion cyclotron resonance mass spectrometer.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
January 2014
Rationale: The post-translational modification known as glycation affects the physiological properties of peptides and proteins. Glycation is particularly important during hyperglycaemia where α-dicarbonyl compounds are generated. These compounds react with proteins to generate α-dicarbonyl-derived glycation products, which are correlated with diabetic complications such as nephropathy, retinopathy, and neuropathy, among others.
View Article and Find Full Text PDF