Neurons are highly polarized cells with dendrites and axons. Dendrites, which receive sensory information or input from other neurons, often display elaborately branched morphologies. While mechanisms that promote dendrite branching have been widely studied, less is known about the mechanisms that restrict branching.
View Article and Find Full Text PDFNeurons must access the environment to gather information, but this exposure must be carefully managed. New work finds that glial cells, the non-neuronal component of the nervous system, control environmental access by stage- and sex-specific patterning of the extracellular matrix.
View Article and Find Full Text PDFAging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the homeodomain-interacting protein kinase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging.
View Article and Find Full Text PDFAging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the h omeodomain-interacting p rotein k inase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging.
View Article and Find Full Text PDFContext: Continuous subcutaneous insulin infusions (CSIIs) and continuous glucose monitors (CGMs) have revolutionized the management of diabetes mellitus (DM). Over the last 2 decades the development of advanced, small, and user-friendly technology has progressed substantially, essentially closing the loop in the fasting and postabsorptive state, nearing the promise of an artificial pancreas (AP). The momentum was mostly driven by the diabetes community itself, to improve its health and quality of life.
View Article and Find Full Text PDFN-glycans are molecularly diverse sugars borne by over 70% of proteins transiting the secretory pathway and have been implicated in protein folding, stability, and localization. Mutations in genes important for N-glycosylation result in congenital disorders of glycosylation that are often associated with intellectual disability. Here, we show that structurally distinct N-glycans regulate an extracellular protein complex involved in the patterning of somatosensory dendrites in Caenorhabditis elegans.
View Article and Find Full Text PDFDendritic arbors are crucial for nervous system assembly, but the intracellular mechanisms that govern their assembly remain incompletely understood. Here, we show that the dendrites of PVD neurons in are patterned by distinct pathways downstream of the DMA-1 leucine-rich transmembrane (LRR-TM) receptor. DMA-1/LRR-TM interacts through a PDZ ligand motif with the guanine nucleotide exchange factor TIAM-1/GEF in a complex with to pattern higher order 4° dendrite branches by localizing F-actin to the distal ends of developing dendrites.
View Article and Find Full Text PDFEchinoderms possess an incredible regenerative capacity. Within this phylum, holothurians, better known as sea cucumbers, can regenerate most of their internal and external organs. While regeneration has been studied in several species, the most recent and extensive studies have been done in the species Holothuria glaberrima, the focus of most of our discussion.
View Article and Find Full Text PDFThe extracellular matrix is essential for various aspects of nervous system patterning. For example, sensory dendrites in flies, worms and fish have been shown to rely on coordinated interactions of tissues with extracellular matrix proteins. Here we show that the conserved basement membrane protein UNC-52/Perlecan is required for establishing the correct number of the highly ordered dendritic trees in the somatosensory neuron PVD in This function is dependent on four specific immunoglobulin domains, but independent of the known functions of UNC-52 in mediating muscle-skin attachment.
View Article and Find Full Text PDFThe nervous system regulates complex behaviors through a network of neurons interconnected by synapses. How specific synaptic connections are genetically determined is still unclear. Male mating is the most complex behavior in It is composed of sequential steps that are governed by > 3000 chemical connections.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
December 2017
One of the main challenges faced by investigators studying the nervous system of members of the phylum Echinodermata is the lack of markers to identify nerve cells and plexi. Previous studies have utilized an antibody, RN1, that labels most of the nervous system structures of the sea cucumber Holothuria glaberrima and other echinoderms. However, the antigen recognized by RN1 remained unknown.
View Article and Find Full Text PDFHeparan sulfates (HS) are linear polysaccharides with complex modification patterns, which are covalently bound via conserved attachment sites to core proteins to form heparan sulfate proteoglycans (HSPGs). HSPGs regulate many aspects of the development and function of the nervous system, including cell migration, morphology, and network connectivity. HSPGs function as cofactors for multiple signaling pathways, including the Wnt-signaling molecules and their Frizzled receptors.
View Article and Find Full Text PDFSensory dendrite arbors are patterned through cell-autonomously and non-cell-autonomously functioning factors [1-3]. Yet, only a few non-cell-autonomously acting proteins have been identified, including semaphorins [4, 5], brain-derived neurotrophic factors (BDNFs) [6], UNC-6/Netrin [7], and the conserved MNR-1/Menorin-SAX-7/L1CAM cell adhesion complex [8, 9]. This complex acts from the skin to pattern the stereotypic dendritic arbors of PVD and FLP somatosensory neurons in Caenorhabditis elegans through the leucine-rich transmembrane receptor DMA-1/LRR-TM expressed on PVD neurons [8, 9].
View Article and Find Full Text PDFThe Echinodermata comprise an interesting branch in the phylogenetic tree of deuterostomes. Their radial symmetry which is reflected in their nervous system anatomy makes them a target of interest in the study of nervous system evolution. Until recently, the study of the echinoderm nervous system has been hindered by a shortage of neuronal markers.
View Article and Find Full Text PDFNeurite branching is essential for correct assembly of neural circuits, yet it remains a poorly understood process. For example, the neural cell adhesion molecule KAL-1/anosmin-1, which is mutated in Kallmann syndrome, regulates neurite branching through mechanisms largely unknown. Here, we show that KAL-1/anosmin-1 mediates neurite branching as an autocrine co-factor with EGL-17/FGF through a receptor complex consisting of the conserved cell adhesion molecule SAX-7/L1CAM and the fibroblast growth factor receptor EGL-15/FGFR.
View Article and Find Full Text PDFThe development of the nervous system is a complex process requiring the integration of numerous molecular cues to form functional circuits. Many cues are regulated by heparan sulfates, a class of linear glycosaminoglycan polysaccharides. These sugars contain distinct modification patterns that regulate protein-protein interactions.
View Article and Find Full Text PDFEchinoderms occupy a key position in the evolution of deuterostomes. As such, the study of their nervous system can shed important information on the evolution of the vertebrate nervous system. However, the study of the echinoderm nervous system has lagged behind when compared to that of other invertebrates due to the lack of tools available.
View Article and Find Full Text PDFSensory dendrites depend on cues from their environment to pattern their growth and direct them toward their correct target tissues. Yet, little is known about dendrite-substrate interactions during dendrite morphogenesis. Here, we describe MNR-1/menorin, which is part of the conserved Fam151 family of proteins and is expressed in the skin to control the elaboration of "menorah"-like dendrites of mechanosensory neurons in Caenorhabditis elegans.
View Article and Find Full Text PDFHeparan sulfate (HS) is an unbranched glycosaminoglycan exhibiting substantial molecular diversity due to multiple, nonuniformly introduced modifications, including sulfations, epimerization, and acetylation. HS modifications serve specific and instructive roles in neuronal development, leading to the hypothesis of a HS code that regulates nervous system patterning. Although the in vivo roles of many of the HS modifications have been investigated, very little is known about the function of HS 3-O-sulfation in vivo.
View Article and Find Full Text PDFMembers of the calbindin subfamily serve as markers of subpopulations of neurons within the vertebrate nervous system. Although markers of these proteins are widely available and used, their application to invertebrate nervous systems has been very limited. In this study we investigated the presence and distribution of members of the calbindin subfamily in the sea cucumber Holothuria glaberrima (Selenka, 1867).
View Article and Find Full Text PDFCatecholamines have been extensively reported to be present in most animal groups, including members of Echinodermata. In this study, we investigated the presence and distribution of catecholaminergic nerves in two members of the Holothuroidea, Holothuria glaberrima (Selenka, 1867) (Aspidochirotida, Holothuroidea) and Holothuria mexicana (Ludwig, 1875) (Aspidochirotida, Holothuroidea), by using induced fluorescence for catecholamines on tissue sections and immunohistochemistry with an antibody that recognizes tyrosine hydroxylase. The presence of a catecholaminergic nerve plexus similar in distribution and extension to those previously reported in other members of Echinodermata was observed.
View Article and Find Full Text PDFEchinoderms are a key group in understanding the evolution of the nervous system in the Metazoa. Remarkably, little is known about echinoderm neurobiology. The echinoderm podia, which are unique echinoderm modifications and comprise structures responsible for locomotion and feeding, have been largely neglected in nervous system studies.
View Article and Find Full Text PDFThe echinoderm nervous system is one of the least studied among invertebrates, partly because the tools available to study the neurobiology of this phylum are limited. We have now produced a monoclonal antibody (RN1) that labels a nervous system component of the sea cucumber Holothuria glaberrima. Western blots show that our antibody recognizes a major band of 66 kDa and a minor band of 53 kDa.
View Article and Find Full Text PDF