We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target.
View Article and Find Full Text PDFWe present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank.
View Article and Find Full Text PDFIn this study we have undertaken the theoretical analysis of the effect of R249S carcinogenic and H168R-R249S suppressor mutation at core domain of the tumor suppressor protein p53, on its natural interaction with DNA using a newly developed method. The results show that the carcinogenic mutation R249S affects the flexibility of L3 loop region in p53, inducing the loss of important hydrogen bonds observed at interaction in the wild-type with DNA, on the other hand the suppressor mutation H168R on the R249S assists in maintaining the wild-type like flexibility of the L3 region in p53 and thus recover the interaction terms lost in the carcinogenic mutation alone. The present study sets a new direction in the development of new drugs that may restore the interactions that lost as a consequence of the carcinogenic mutations in p53.
View Article and Find Full Text PDFUsing a hybrid quantum chemical/classical molecular dynamics method, we have studied the tribochemical reaction dynamics of molybdenum dithiocarbamate (MoDTC), a commonly used friction modifier in automobile engine oils. MoDTC molecule adsorbed on rubbing nascent iron surface was situated. We firstly investigated the dynamic behavior of MoDTC molecule on the rubbing Fe(001) surface.
View Article and Find Full Text PDFAs the most reactive surface, the stoichiometric O-bridge terminated anatase(001) surface attracted considerable attentions in many application fields. The interfacial electron transfer in dye-sensitized anatase(001) plays a principal role in a variety of photoinduced reactions. In the present work, the UV-vis absorption spectrum of TiO2 bulk and different surface models were calculated by means of tight-binding quantum chemical molecular dynamics program "Colors-excite" for the first time.
View Article and Find Full Text PDFFast and proper assessment of bio macro-molecular complex structural rigidity as a measure of structural stability can be useful in systematic studies to predict molecular function, and can also enable the design of rapid scoring functions to rank automatically generated bio-molecular complexes. Based on the graph theoretical approach of Jacobs et al. [Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF (2001) Protein flexibility predictions using graph theory.
View Article and Find Full Text PDFSince morpholine oxidation has recently been shown to involve Cytochrome P450, the study on its mechanism at molecular level using quantum chemical calculations for the model of cytochrome active site is reported here. The reaction pathway is investigated for two electronic states, the doublet and the quartet, by means of density functional theory. The results show that morpholine hydroxylation occurs through hydrogen atom abstraction and rebound mechanism.
View Article and Find Full Text PDFA novel algorithm is introduced to deal with intra-molecular motions of loops and domains that undergo proteins at interaction with other proteins. The methodology is based on complex energy landscape sampling and robotic motion planning. Mapping high flexibility regions on the protein underlies the proposed algorithm.
View Article and Find Full Text PDFThe metabolism mechanism of (S)-N-[1-(3-morpholin-4ylphenyl)ethyl]-3-phenylacrylamide, mediated by CYP3A4 Cytochrome has been investigated by density functional QM calculations aided with molecular mechanics/molecular dynamics simulations. Two different orientations of phenyl ring for substrate approach toward oxyferryl center, imposing two subsequent rearrangement pathways have been investigated. Starting from sigma-complex in perpendicular orientation enzymatic mechanism involves consecutive proton shuttle intermediate, which further leads to the formation of alcohol and ketone.
View Article and Find Full Text PDFComb Chem High Throughput Screen
February 2007
Computational chemistry can provide fundamental knowledge regarding various aspects of materials. While its impact in scientific research is greatly increasing, its contributions to industrially important issues are far from satisfactory. In order to realize industrial innovation by computational chemistry, a new concept "combinatorial computational chemistry" has been proposed by introducing the concept of combinatorial chemistry to computational chemistry.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2007
The Ah receptor (AhR) is a ligand-activated transcription factor. Five amino acids as candidate amino acids necessary for ligand binding within or near the ligand-binding domain were selected based on their evolutional conservation and their aromatic nature that could interact with xenobiotic ligands. These amino acids were changed to Ala, and the mutated AhRs were subjected to a test of their transactivation activity in HeLa cells.
View Article and Find Full Text PDFThree-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed for 44 (benzothiazole-2-yl) acetonitrile derivatives, inhibiting c-Jun N-terminal kinase-3 (JNK3). It includes molecular field analysis (MFA) and receptor surface analysis (RSA). The QSAR model was developed using 34 compounds and its predictive ability was assessed using a test set of 10 compounds.
View Article and Find Full Text PDFWe present a theoretical study on the proton dissociation properties of the membranes for polymer electrolyte fuel cells. A density functional theory method is used to study the influence of fluorocarbon and hydrocarbon backbones on proton dissociation, the interaction of water molecules with the sulfonic acid group, and the energy barriers for proton dissociation. Better proton dissociation properties of CH(3)SO(3)H compared to CF(3)SO(3)H are observed from statistical analyses of the optimized structures for both systems.
View Article and Find Full Text PDFTo study the atomistic behavior of the phosphoric ester molecule on the nascent Fe surface under boundary lubrication conditions, we adopted a hybrid tight-binding quantum chemical molecular dynamics method. First, we investigated chemical interactions between phosphoric ester and the nascent Fe surface. Phosphoric ester was shown to interact with the nascent Fe surface, forming both covalent and ionic bonds.
View Article and Find Full Text PDFThe phagocyte NADPH oxidase complex plays a crucial role in host defense against microbial infection through the production of superoxides. Chronic granulomatous disease (CGD) is an inherited immune deficiency caused by the absence of certain components of the NADPH oxidase. Key to the activation of the NADPH oxidase is the cytoplasmic subunit p47phox, which includes the tandem SH3 domains (N-SH3 and C-SH3).
View Article and Find Full Text PDFHomocrystallized and amorphous enantiomeric blend films were prepared from the melt of high molecular weight poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) (1:1) by crystallization and quenching, respectively. A phosphate-buffered solution was used to investigate effects of homocrystallinity via in vitro hydrolysis as well as crystallization process during the hydrolysis, which was performed for a period of 24 months at 37 degrees C and pH 7.4.
View Article and Find Full Text PDFWe report on a new method to compute the antigenic degree of peptides from available experimental data on peptide binding affinity to class I MHC molecules. The methodology is a combination of two strategies at different levels of information. The first, at the primary structure level, consists in expressing the peptides binding activity as a profile of amino acid contributions, amino acid similarity being accounted for by their characteristic physicochemical properties and their position within the sequence.
View Article and Find Full Text PDFIt is a well-known fact that tubal stenosis and/or peritubal adhesion are often associated with Chlamydia trachomatis infection. Although tubal pregnancy may be attributed to this infection, there are only extremely rare cases in which the presence of C. trachomatis has been confirmed by immumo-histochemical examination on tissues isolated from patients with tubal pregnancy.
View Article and Find Full Text PDF