Publications by authors named "Carlos A Cunha"

Poisson-Boltzmann (PB) models are a fast and common tool for studying electrostatic processes in proteins, particularly their ionization equilibrium (protonation and/or reduction), often yielding quite good results when compared with more detailed models. Yet, they are conceptually very simple and necessarily approximate, their empirical character being most evident when it comes to the choice of the dielectric constant assigned to the protein region. The present study analyzes several factors affecting the ability of PB-based methods to model protein ionization equilibrium.

View Article and Find Full Text PDF

The cytochrome c nitrite reductase is isolated from the membranes of the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 as a heterooligomeric complex composed by two subunits (61 kDa and 19 kDa) containing c-type hemes, encoded by the genes nrfA and nrfH, respectively. The extracted complex has in average a 2NrfA:1NrfH composition. The separation of ccNiR subunits from one another is accomplished by gel filtration chromatography in the presence of SDS.

View Article and Find Full Text PDF

The gene encoding cytochrome c nitrite reductase (NrfA) from Desulfovibrio desulfuricans ATCC 27774 was sequenced and the crystal structure of the enzyme was determined to 2.3-A resolution. In comparison with homologous structures, it presents structural differences mainly located at the regions surrounding the putative substrate inlet and product outlet, and includes a well defined second calcium site with octahedral geometry, coordinated to propionates of hemes 3 and 4, and caged by a loop non-existent in the previous structures.

View Article and Find Full Text PDF

Crystals of cytochrome c peroxidase from Pseudomonas stutzeri were obtained using sodium citrate and PEG 8000 as precipitants. A complete data set was collected to a resolution of 1.6 A under cryogenic conditions using synchrotron radiation at the ESRF.

View Article and Find Full Text PDF