Publications by authors named "Carlos A Arias"

Bacterial pustule (BP), caused by pv. , is an important disease that, under favorable conditions, can drastically affect soybean production. We performed a genome-wide association study (GWAS) with a panel containing Brazilian and American cultivars, which were screened qualitatively and quantitatively against two Brazilian isolates (IBS 333 and IBS 327).

View Article and Find Full Text PDF

Soybean is a crucial crop for the Brazilian economy, but it faces challenges from the biotrophic fungus Phakopsora pachyrhizi, which causes Asian Soybean Rust (ASR). In this study, we aimed to identify SNPs associated with resistance within the Rpp1 locus, which is effective against Brazilian ASR populations. We employed GWAS and re-sequencing analyzes to pinpoint SNP markers capable of differentiating between soybean accessions harboring the Rpp1, Rpp1-b and other alternative alleles in the Rpp1 locus and from susceptible soybean cultivars.

View Article and Find Full Text PDF

This study comparatively evaluated effluent reuse from two TWs-a horizontal subsurface flow (HF) and a vertical subsurface flow (VF)-used for rural wastewater treatment in Central Chile during the initial operation stage. The two TWs were planted with Zantedeschia aethiopica and were operated for 10 months at a pilot scale. The water quality of the influent and effluents was measured and compared with reuse regulations.

View Article and Find Full Text PDF

Harmful cyanobacterial blooms will be more intense and frequent in the future, contaminating surface waters with cyanotoxins and posing a threat to communities heavily reliant on surface water usage for crop irrigation. Constructed wetlands (CWs) are proposed to ensure safe crop irrigation, but more research is needed before implementation. The present study operated 28 mesocosms in continuous mode mimicking horizontal sub-surface flow CWs.

View Article and Find Full Text PDF

This comprehensive scientific review evaluates the effectiveness of nature-based solutions (NBS) in reducing antibiotics (ABs), combating antimicrobial resistance (AMR), and controlling pathogens in various aquatic environments at different river catchment levels. It covers conventional and innovative treatment wetland configurations for wastewater treatment to reduce pollutant discharge into the aquatic ecosystems as well as exploring how river restoration and saltmarshes can enhance pollutant removal. Through the analysis of experimental studies and case examples, the review shows NBS's potential for providing sustainable and cost-effective solutions to improve the health of aquatic ecosystems.

View Article and Find Full Text PDF

Hexachlorocyclohexanes (HCH) belong to the banned pesticides with short-time production and use during the last century. However, the consequences of this short period are still present as persistent environmental contamination. This study represents the large lab-scale experiment focused on the HCH accumulation and metabolism in selected wetland plants (Juncus effuses, Typha latifolia, Phragmites australis) and trees (Alnus glutinosa) after the exposure to the technical mix of HCH isomers (t-HCH) or δ-HCH at three different concentration.

View Article and Find Full Text PDF

Cyanobacterial blooms are expected to become more frequent and severe in surface water reservoirs due to climate change and ecosystem degradation. It is an emerging challenge that especially countries relying on surface water supplies will face. Nature-based solutions (NBS) like constructed wetlands and biofilters can be used for cyanotoxin remediation.

View Article and Find Full Text PDF

Cyanobacterial blooms releasing harmful cyanotoxins, such as microcystin (MC) and cylindrospermopsin (CYN), are prominent threats to human and animal health. Constructed wetlands (CW) may be a nature-based solution for bioremediation of lake surface water containing cyanotoxins, due to its low-cost requirement of infrastructure and environmentally friendly operation. There is recent evidence that microcystin-LR (MC-LR) can efficiently be removed in CW microcosms where CYN degradation in CW is unknown.

View Article and Find Full Text PDF

Over the past few decades, the increase in dependency on healthcare facilities has led to the generation of large quantities of hospital wastewater (HWW) rich in chemical oxygen demand (COD), total suspended solids (TSS), ammonia, recalcitrant pharmaceutically active compounds (PhACs), and other disease-causing microorganisms. Conventional treatment methods often cannot effectively remove the PhACs present in wastewater. Hence, hybrid processes comprising of biological treatment and advanced oxidation processes have been used recently to treat complex wastewater.

View Article and Find Full Text PDF

Coffee is one of the most important agricultural products in Colombia. To date, small-scale Colombian coffee growers have developed this activity with a simple infrastructure and random use of water that generates harmful by-products to the water resource mainly in the stage of separation of the mucilage. The coffee mucilage wastewater (CMW) is composed of high organic loads and its impact on water sources is due to its high load of nutrients such as nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) values of over 25,000 mg/L.

View Article and Find Full Text PDF

This work aimed to evaluate the performance of modified vertical flow treatment wetlands (VF-TWs) in terms of depth and medium to assess the effect of the feeding/resting periods and footprint (FP). The modifications were proposed for treating domestic wastewater in rural areas with flow variations such as tourist sites. The experimental setup included six laboratory-scale VF-TWs: (a) normal (VF-N), bed depth 1.

View Article and Find Full Text PDF

Biofilter systems coupling with microbial electrochemical technology can enhance the removal performance of pollutants. In this study, two types of coke (PK-A and PK-LSN) were used as electroconductive substrates in biofilter systems with silicone tubings. The results showed that the silicone tubings were beneficial for removing NH-N.

View Article and Find Full Text PDF

A METland is an innovative treatment wetland (TW) that relies on the stimulation of electroactive bacteria (EAB) to enhance the degradation of pollutants. The METland is designed in a short-circuit mode (in the absence of an external circuit) using an electroconductive bed capable of accepting electrons from the microbial metabolism of pollutants. Although METlands are proven to be highly efficient in removing organic pollutants, the study of EAB activity in full-scale systems is a challenge due to the absence of a two-electrode configuration.

View Article and Find Full Text PDF

The use of constructed wetlands (CWs) is a promising approach for the remediation of hydrocarbon-polluted wastewater. The amendments of CWs with nutrients, surfactants, and aeration enhances the removal of pollutants from wastewater. The objective of the present study was to explore the effect of external stimulants, i.

View Article and Find Full Text PDF

In this work, we have evaluated the impact of intermittent induced aeration in total nitrogen (TN), ammonia (NH-N) and nitrate-nitrogen (NO-N) removal in four pilot-scale vertical flow constructed wetlands (VFCW) (two aerated two non-aerated) using cork by-product or gravel as the filter material and planted with . Both aerated and non-aerated systems achieved high COD and BOD elimination rates (≥ 90%) at the end of the 5-month test period. However, the aerated systems presented maximal COD and BOD removal from the third month of operation onwards since air supply favored the oxidative bioprocesses occurring within the wetlands.

View Article and Find Full Text PDF

Introduction: In high-volume trauma centers, especially in developing countries, penetrating cardiac box injuries are frequent. Although many aspects of penetrating chest injuries have been well established, video-assisted thoracoscopy is still finding its place in cardiac box trauma and algorithmic approaches are still lacking. The purpose of this manuscript is to provide a streamlined recommendation for penetrating cardiac box injury in stable patients.

View Article and Find Full Text PDF

Constructed wetlands are an effective biofilter-based technology for treating wastewater in a sustainable way; however, their main disadvantage is a large area footprint. To cope with this limitation a new generation of constructed wetlands, the METlands®, have been recently reported. METlands® replace gravel with a granular electrically conductive material to enhance the oxidative metabolisms of electroactive bacteria by facilitating the flux of electron through the material and, consequently, increase bioremediation rates.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how microbial electrochemical technologies (METland systems) can improve constructed wetlands (CWs) and identifies factors influencing pollutant removal and microbial activity.
  • The research employed community-level physiological profile (CLPP) analysis to assess the functionality of microbial communities in laboratory METlands with different setups and carbon-based materials.
  • Findings indicated that variations in microbial activity depended more on the material characteristics rather than plant presence, with some materials supporting more diverse and enriched microbial biofilms than others.
View Article and Find Full Text PDF

Constructed wetlands (CWs) performance enhancement can be done with intensification strategies. A recent strategy still in study is the coupling with Microbial Electrochemical Technologies (MET). An alternative system using electro-conductive biofilters instead of electrodes and circuits used in MET, resulted in the development of a Microbial Electrochemical-based CW (METland).

View Article and Find Full Text PDF

Agricultural practices have raised the level of nutrients reaching aquifers. In Europe, nitrate pollution is considered as one of the main threats for the quality of groundwater in agricultural areas. Treatment wetlands (TWs), also known as Constructed Wetlands, are used for groundwater treatment in areas with an important concentration of nitrogen compounds; total nitrogen removal depends on the type and operation scheme.

View Article and Find Full Text PDF

Ten plant species were grown in constructed wetlands (CWs) to remediate water containing 2% (w/v) crude oil. The plant species with better growth and biomass production were Typha latifolia and Cyperus laevigatus, and they were significantly correlated (R = 0.91) with hydrocarbon degradation.

View Article and Find Full Text PDF

The aim of the present study was to elucidate the microbial community metabolic profiles in saturated constructed wetland (CW) mesocosms planted with five different wetland plant species fed with water individually spiked with 100 μg L ibuprofen or iohexol. Community-level physiological profiling (CLPP) using Biolog Ecoplates was performed and coupled with the assessment of water quality parameters (water temperature, pH, DO and TOC, TN, NH-N, PO-P removal efficiency). The microbial community metabolic profiles (microbial activity, richness, and carbon source utilization), as well as the water quality parameters revealed similar trends among the control mesocosms and the mesocosms fed with water spiked with iohexol and ibuprofen.

View Article and Find Full Text PDF

Reusing by-products is an important strategy to ensure the preservation of natural capital and climate change mitigation. This study aimed at evaluating the potential of cork granulates, a by-product of winery industry, as an organic carbon (OC) source for the treatment of hydroponic wastewaters. First, chemical characterization was performed and discussed.

View Article and Find Full Text PDF
Article Synopsis
  • Constructed wetlands (CWs) are an eco-friendly method for treating wastewater and rely significantly on the support matrix for plant and microbial growth, yet the matrix's role in removing organic micro-pollutants (OMPs) has not been extensively studied.
  • Six common materials were tested for their ability to adsorb OMPs like ibuprofen, and while their adsorption capacities were low compared to traditional sorbents, their impact on microbial communities was further explored.
  • The study found that over time, the presence of various materials improved the degradation of OMPs through changes in microbial activity, suggesting that even materials with low adsorption can positively influence OMP removal in CWs.
View Article and Find Full Text PDF