Publications by authors named "Carlos A Aguilar"

Adult stem cells occupy a niche that contributes to their function, but how stem cells rebuild their microenvironment after injury remains an open-ended question. Herein, biomaterial-based systems and metabolic labeling are utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts are observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors.

View Article and Find Full Text PDF

Aging is associated with a decline in stem cell functionality and number across the organism. In this study, we aimed to further unravel Muscle Stem Cells (MuSCs) aging by assessing how systemic factors influence MuSC fate decisions through long-term epigenetic landscape remodelling. As aging is intricately linked to a pro-inflammatory shift, we studied the epigenetic effects of inflammatory signals in MuSCs and measured decreased H4K20me1 levels.

View Article and Find Full Text PDF

Adult stem cells occupy a niche that contributes to their function, but how stem cells remodel their microenvironment remains an open-ended question. Herein, biomaterials-based systems and metabolic labeling were utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts were observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors.

View Article and Find Full Text PDF

The acute traumatic or surgical loss of skeletal muscle, known as volumetric muscle loss (VML), is a devastating type of injury that results in exacerbated and persistent inflammation followed by fibrosis. The mechanisms that mediate the magnitude and duration of the inflammatory response and ensuing fibrosis after VML remain understudied, and as such, the development of regenerative therapies has been limited. To address this need, we profiled how lipid mediators, which are potent regulators of the immune response after injury, varied with VML injuries that heal or result in fibrosis.

View Article and Find Full Text PDF

Brain metastases are the most lethal progression event, in part because the biological processes underpinning brain metastases are poorly understood. There is a paucity of realistic models of metastasis, as current murine models are slow to manifest metastasis. We set out to delineate metabolic and secretory modulators of brain metastases by utilizing two models consisting of microfluidic devices: 1) a blood brain niche (BBN) chip that recapitulates the blood-brain-barrier and niche; and 2) a migration chip that assesses cell migration.

View Article and Find Full Text PDF

Somatic cell fate is an outcome set by the activities of specific transcription factors and the chromatin landscape and is maintained by gene silencing of alternate cell fates through physical interactions with the nuclear scaffold. Here, we evaluate the role of the nuclear scaffold as a guardian of cell fate in human fibroblasts by comparing the effects of transient loss (knockdown) and mutation (progeria) of functional Lamin A/C, a core component of the nuclear scaffold. We observed that Lamin A/C deficiency or mutation disrupts nuclear morphology, heterochromatin levels, and increases access to DNA in lamina-associated domains.

View Article and Find Full Text PDF

Volumetric muscle loss (VML) is an acute trauma that results in persistent inflammation, supplantation of muscle tissue with fibrotic scarring, and decreased muscle function. The cell types, nature of cellular communication, and tissue locations that drive the aberrant VML response have remained elusive. Herein, we used spatial transcriptomics on a mouse model of VML and observed that VML engenders a unique spatial profibrotic pattern driven by crosstalk between fibrotic and inflammatory macrophages and mesenchymal-derived cells.

View Article and Find Full Text PDF

Age-related skeletal muscle atrophy or sarcopenia is a significant societal problem that is becoming amplified as the world's population continues to increase. The regeneration of damaged skeletal muscle is mediated by muscle stem cells, but in old age muscle stem cells become functionally attenuated. The molecular mechanisms that govern muscle stem cell aging encompass changes across multiple regulatory layers and are integrated by the three-dimensional organization of the genome.

View Article and Find Full Text PDF

Objective: Our objective was to identify macrophage subpopulations and gene signatures associated with regenerative or fibrotic healing across different musculoskeletal injury types.

Background: Subpopulations of macrophages are hypothesized to fine tune the immune response after damage, promoting either normal regenerative, or aberrant fibrotic healing.

Methods: Mouse single-cell RNA sequencing data before and after injury were assembled from models of musculoskeletal injury, including regenerative and fibrotic mouse volumetric muscle loss (VML), regenerative digit tip amputation, and fibrotic heterotopic ossification.

View Article and Find Full Text PDF

Volumetric muscle loss (VML) overwhelms the innate regenerative capacity of mammalian skeletal muscle (SkM), leading to numerous disabilities and reduced quality of life. Immune cells are critical responders to muscle injury and guide tissue resident stem cell– and progenitor-mediated myogenic repair. However, how immune cell infiltration and intercellular communication networks with muscle stem cells are altered following VML and drive pathological outcomes remains underexplored.

View Article and Find Full Text PDF

The health and homeostasis of skeletal muscle are preserved by a population of tissue-resident muscle stem cells (MuSCs) that maintain a state of mitotic and metabolic quiescence in adult tissues. The capacity of MuSCs to preserve the quiescent state declines with aging and metabolic insults, promoting premature activation and stem cell exhaustion. Sestrins are a class of stress-inducible proteins that act as antioxidants and inhibit the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling complex.

View Article and Find Full Text PDF

During aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function impacting mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs); however, the relationship between MuSCs and innervation has not been established. Herein, we administered severe neuromuscular trauma to a transgenic murine model that permits MuSC lineage tracing.

View Article and Find Full Text PDF
Article Synopsis
  • Specialized pro-resolving mediators, like resolvin D1, are important for reducing inflammation and promoting tissue healing, yet their effects on age-related muscle issues are unclear.
  • Aged mice showed persistent muscle inflammation linked to a lack of these mediators, leading to worse recovery after muscle injury compared to younger mice.
  • Treatment with resolvin D1 helped reduce inflammation and improved muscle recovery in aged mice, suggesting that these mediators could be useful in developing therapies for muscle injuries in older individuals.
View Article and Find Full Text PDF

All multicellular organisms rely on intercellular communication networks to coordinate physiological functions. As members of a dynamic social network, each cell receives, processes, and redistributes biological information to define and maintain tissue homeostasis. Uncovering the molecular programs underlying these processes is critical for prevention of disease and aging and development of therapeutics.

View Article and Find Full Text PDF

Specialized proresolving mediators (SPMs) actively limit inflammation and expedite its resolution by modulating leukocyte recruitment and function. Here we profiled intramuscular lipid mediators via liquid chromatography-tandem mass spectrometry-based metabolipidomics following myofiber injury and investigated the potential role of SPMs in skeletal muscle inflammation and repair. Both proinflammatory eicosanoids and SPMs increased following myofiber damage induced by either intramuscular injection of barium chloride or synergist ablation-induced functional muscle overload.

View Article and Find Full Text PDF

During aging, there is a progressive loss of volume and function in skeletal muscle that impacts mobility and quality of life. The repair of skeletal muscle is regulated by tissue-resident stem cells called satellite cells (or muscle stem cells [MuSCs]), but in aging, MuSCs decrease in numbers and regenerative capacity. The transcriptional networks and epigenetic changes that confer diminished regenerative function in MuSCs as a result of natural aging are only partially understood.

View Article and Find Full Text PDF

Volumetric muscle loss (VML) is the traumatic or surgical loss of skeletal muscle beyond the inherent regenerative capacity of the body, generally leading to severe functional deficit. Formation of appropriate somato-motor innervations remains one of the biggest challenges for both autologous grafts as well as tissue-engineered muscle constructs. We aim to address this challenge by developing pre-innervated tissue-engineered muscle comprised of long aligned networks of spinal motor neurons and skeletal myocytes on aligned nanofibrous scaffolds.

View Article and Find Full Text PDF

Myeloid cells are critical to the development of fibrosis following muscle injury; however, the mechanism of their role in fibrosis formation remains unclear. In this study, we demonstrate that myeloid cell-derived TGF-β1 signaling is increased in a profibrotic ischemia reperfusion and cardiotoxin muscle injury model. We found that myeloid-specific deletion of abrogates the fibrotic response in this injury model and reduces fibro/adipogenic progenitor cell proliferation while simultaneously enhancing muscle regeneration, which is abrogated by adaptive transfer of normal macrophages.

View Article and Find Full Text PDF

Cellular identity and state are determined by a collection of molecular components that are specified during development and stabilized thereafter to maintain and protect tissue functions. Alteration of the molecular elements (gene expression program and chromatin state) as a result of disease or age can induce somatic cells to assume different identities or modulate functions. Therapeutic use of this technique, called 'cellular reprogramming', is very promising for regenerative medicine, but implementation of reprogramming-based strategies in vivo has been precluded by technological and safety limitations.

View Article and Find Full Text PDF

Skeletal muscle possesses a remarkable capacity to regenerate when injured, but when confronted with major traumatic injury resulting in volumetric muscle loss (VML), the regenerative process consistently fails. The loss of muscle tissue and function from VML injury has prompted development of a suite of therapeutic approaches but these strategies have proceeded without a comprehensive understanding of the molecular landscape that drives the injury response. Herein, we administered a VML injury in an established rodent model and monitored the evolution of the healing phenomenology over multiple time points using muscle function testing, histology, and expression profiling by RNA sequencing.

View Article and Find Full Text PDF

Background: During total knee arthroplasty (TKA), total synovectomy (TS) as a part of the surgical technique has been proposed to reduce the inflammatory tissue after the procedure, but there is a controversy about it because of the risk of major postsurgical bleeding. The aim of this study was to compare postoperative bleeding, pain, and health-related quality of life (HRQOL) after a TKA when a TS is performed and when it is not.

Methods: The difference in pre and postoperative hemoglobin was measured, as well as postoperative pain using visual analogue scale (VAS) scores at 24 and 48 h post-surgical, HRQOL was measured prior to surgery and at one year using the SF-12V2 questionnaire.

View Article and Find Full Text PDF

Volumetric muscle loss (VML) resulting from extremity trauma presents chronic and persistent functional deficits which ultimately manifest disability. Acellular biological scaffolds, or decellularized extracellular matrices (ECMs), embody an ideal treatment platform due to their current clinical use for soft tissue repair, off-the-shelf availability, and zero autogenous donor tissue burden. ECMs have been reported to promote functional skeletal muscle tissue remodeling in small and large animal models of VML injury, and this conclusion was reached in a recent clinical trial that enrolled 13 patients.

View Article and Find Full Text PDF

Following injury, adult skeletal muscle undergoes a well-coordinated sequence of molecular and physiological events to promote repair and regeneration. However, a thorough understanding of the in vivo epigenomic and transcriptional mechanisms that control these reparative events is lacking. To address this, we monitored the in vivo dynamics of three histone modifications and coding and noncoding RNA expression throughout the regenerative process in a mouse model of traumatic muscle injury.

View Article and Find Full Text PDF