Publications by authors named "Carlos A A Penatti"

Alzheimer disease's (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. The central nervous system is an important target of thyroid hormones (TH). An inverse association between serum triiodothyronine (T3) levels and the risk of AD symptoms and progression has been reported.

View Article and Find Full Text PDF

Diacetyl is a flavoring that imparts a buttery flavor to foods, but the use or exposure to diacetyl has been related to some diseases. We investigated the effect of oral intake of diacetyl in male and female C57/Bl mice. We performed a target metabolomics assay using ultraperformance liquid chromatography paired with triple quadrupole mass spectrometry (UPLC-MS/MS) for the determination and quantification of plasmatic metabolites.

View Article and Find Full Text PDF

Pathology of the rhinencephalon has been a subject of interest in the fields of neurodegenerative diseases, trauma, epilepsy and other neurological conditions. Most of what is known about the human rhinencephalon comes from comparative anatomy studies in other mammals and histological studies in primates. Functional imaging studies can provide new and important insight into the function of the rhinencephalon in humans but have limited spatial resolution, limiting its contribution to the study of the anatomy of the human rhinencephalon.

View Article and Find Full Text PDF

Anabolic androgenic steroids (AAS) comprise a large and growing class of synthetic androgens used clinically to promote tissue-building in individuals suffering from genetic disorders, injuries, and diseases. Despite these beneficial therapeutic applications, the predominant use of AAS is illicit: these steroids are self-administered to promote athletic performance and body image. Hand in hand with the desired anabolic actions of the AAS are untoward effects on the brain and behavior.

View Article and Find Full Text PDF

Humans self-administer anabolic androgenic steroids (AAS) at superphysiological doses for the purpose of building muscle mass and enhancing physique whereas considerably lower doses of AAS are prescribed in the clinic to treat a variety of disorders. A number of studies have demonstrated that individual AAS influence aggressive behavior in rats and mice, but few studies have examined the aggression-enhancing effects of combinations of AAS. Using the resident-intruder paradigm, Experiment 1 determined whether a cocktail of commonly abused AAS increased aggressive behavior in gonadally-intact male C57BL/6J mice and examined whether the androgen receptor (AR) was involved.

View Article and Find Full Text PDF

We have identified a point mutation in Npc1 that creates a novel mouse model (Npc1(nmf164)) of Niemann-Pick type C1 (NPC) disease: a single nucleotide change (A to G at cDNA bp 3163) that results in an aspartate to glycine change at position 1005 (D1005G). This change is in the cysteine-rich luminal loop of the NPC1 protein and is highly similar to commonly occurring human mutations. Genetic and molecular biological analyses, including sequencing the Npc1(spm) allele and identifying a truncating mutation, confirm that the mutation in Npc1(nmf164) mice is distinct from those in other existing mouse models of NPC disease (Npc1(nih), Npc1(spm)).

View Article and Find Full Text PDF

Disruption of reproductive function is a hallmark of abuse of anabolic androgenic steroids (AAS) in female subjects. To understand the central actions of AAS, patch clamp recordings were made in estrous, diestrous and AAS-treated mice from gonadotropin releasing hormone (GnRH) neurons, neurons in the medial preoptic area (mPOA) and neurons in the anteroventroperiventricular nucleus (AVPV); regions known to provide GABAergic and kisspeptin inputs to the GnRH cells. Action potential (AP) frequency was significantly higher in GnRH neurons of estrous mice than in AAS-treated or diestrous animals.

View Article and Find Full Text PDF

In the past several decades, the therapeutic use of anabolic androgenic steroids (AAS) has been overshadowed by illicit use of these drugs by elite athletes and a growing number of adolescents to enhance performance and body image. As with adults, AAS use by adolescents is associated with a range of behavioral effects, including increased anxiety and altered responses to stress. It has been suggested that adolescents, especially adolescent females, may be particularly susceptible to the effects of these steroids, but few experiments in animal models have been performed to test this assertion.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) neurons are the central regulators of reproduction. GABAergic transmission plays a critical role in pubertal activation of pulsatile GnRH secretion. Self-administration of excessive doses of anabolic androgenic steroids (AAS) disrupts reproductive function and may have critical repercussions for pubertal onset in adolescent users.

View Article and Find Full Text PDF

Anabolic androgenic steroids (AAS) can promote detrimental effects on social behaviors for which GABA type A (GABA(A)) receptor-mediated circuits in the forebrain play a critical role. While all AAS bind to androgen receptors (AR), they may also be aromatized to estrogens and thus potentially impart effects via estrogen receptors (ER). Chronic exposure of wild-type male mice to a combination of chemically distinct AAS increased action potential (AP) frequency, selective GABA(A) receptor subunit mRNAs, and GABAergic synaptic current decay in the medial preoptic area (mPOA).

View Article and Find Full Text PDF

Illicit use of anabolic androgenic steroids (AAS) has become a prevalent health concern not only among male professional athletes, but, disturbingly, among a growing number of women and adolescent girls. Despite the increasing use of AAS among women and adolescents, few studies have focused on the effects of these steroids in females, and female adolescent subjects are particularly underrepresented. Among the hallmarks of AAS abuse are changes in reproductive behaviors.

View Article and Find Full Text PDF

Amino metabolites with potential prooxidant properties, particularly alpha-aminocarbonyls, are the focus of this review. Among them we emphasize 5-aminolevulinic acid (a heme precursor formed from succinyl-CoA and glycine), aminoacetone (a threonine and glycine metabolite), and hexosamines and hexosimines, formed by Schiff condensation of hexoses with basic amino acid residues of proteins. All these metabolites were shown, in vitro, to undergo enolization and subsequent aerobic oxidation, yielding oxyradicals and highly cyto- and genotoxic alpha-oxoaldehydes.

View Article and Find Full Text PDF

Porphyrias are heme-associated metabolic disorders such as intermittent acute porphyria (IAP) and lead poisoning, where 5-aminolevulinate (ALA) accumulates. Effects of ALA on the CNS have been explained by ALA binding to GABA(A) receptors, followed by receptor lesions from oxyradicals and 4, 5-dioxovalerate (DOVA) generated from metal-catalyzed ALA oxidation by oxygen. We have characterized the effects of ALA and DOVA on GABA(A) receptor density in synaptosomes and neurons in vitro and also in brains of rats treated with ALA or succinylacetone methyl ester (SAME), a tyrosine catabolite derivative able to induce ALA accumulation.

View Article and Find Full Text PDF