Publications by authors named "Carlomagno I"

Background: Remediation of heavy metal-contaminated water using phytoremediation with accumulator aquatic plants is a promising low-cost emerging technology that adapts very well to the surrounding ecosystem. For the system to work efficiently, metal-saturated plants must be replaced, producing a potentially toxic amount of biomass that is usually stored dry to reduce its volume. The speciation of the high metal content in this biomass is crucial to define its final destination.

View Article and Find Full Text PDF

We demonstrate that substituting Bi for Sm in the pyrochlore Sm$_2$Ir$_2$O$_7$ induces an anomalous lattice contraction, with $\Delta a \sim -0.012$~\AA~observed at 10\% Bi substitution, where 'a' denotes the lattice constant. Beyond 10\% Bi substitution, the lattice expands according to Vegard's law.

View Article and Find Full Text PDF

Among different Prussian Blue Analogues (PBAs), manganese hexacyanoferrate (MnHCF), with open framework and two abundant electroactive metal sites, exhibits high potential for the grid-scale aqueous rechargeable zinc-ion batteries (ARZIBs) application. Until now, the intercalation mechanism of Zn into MnHCF has not been clearly illustrated. In this work, combining different synchrotron X-ray techniques, the structural and microscopic evolution of MnHCF in 3 m ZnSO electrolyte is comprehensively studied, and a thorough understanding of the intercalation/release dynamic, in terms of local and long-range domain, is provided.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common and devastating primary brain tumor among adults. It is highly lethal disease, as only 25% of patients survive longer than 1 year and only 5% more than 5 years from the diagnosis. To search for the new, more effective methods of treatment, the understanding of mechanisms underlying the process of tumorigenesis is needed.

View Article and Find Full Text PDF

The simultaneous presence of Fe and As ions in groundwater (higher ppb or lower ppm level concentrations at circumneutral pH) as well as in acid mine drainages (AMDs)/industrial wastewater (up to few thousand ppm concentration at strongly acidic pH) are quite common. Therefore, understanding the chemical interactions prevalent between Fe and As ions in aqueous medium leading to nucleation of ionic clusters/solids, followed by aggregation and growth, is of great environmental significance. In the present work, we attempt to probe the nucleation process of Fe-As clusters in solutions of various concentrations and pHs (from AMD to groundwater-like) using a combination of experimental and theoretical techniques.

View Article and Find Full Text PDF

We aimed to evaluate the magnesium content in human cirrhotic liver and its correlation with serum AST levels, expression of hepatocellular injury, and MELDNa prognostic score. In liver biopsies obtained at liver transplantation, we measured the magnesium content in liver tissue in 27 cirrhotic patients (CIRs) and 16 deceased donors with healthy liver (CTRLs) by atomic absorption spectrometry and within hepatocytes of 15 CIRs using synchrotron-based X-ray fluorescence microscopy. In 31 CIRs and 10 CTRLs, we evaluated the immunohistochemical expression in hepatocytes of the transient receptor potential melastatin 7 (TRPM7), a magnesium influx chanzyme also involved in inflammation.

View Article and Find Full Text PDF

We study heat rectification in composition-graded nanowires, with nonlocal and nonlinear effects taken into account in a generalized Guyer-Krumhansl equation. Using a thermal conductivity dependent on composition and temperature, the heat equation is solved. Introducing a non-vanishing heat supply (as for instance, a lateral radiative heat supply), we explore the conditions under which either nonlocal or nonlinear effects or both contribute to heat rectification and how they may be controlled by means of the external radiative flux.

View Article and Find Full Text PDF

Juncus acutus has been proposed as a suitable species for the design of phytoremediation plans. This research aimed to investigate the role played by rhizosphere minerals and water composition on Zn transformations and dynamics in the rhizosphere-plant system of J. acutus exposed to different Zn sources.

View Article and Find Full Text PDF

Four gold coins minted in the V century have been studied with non-destructive synchrotron radiation techniques, namely X-Ray Fluorescence (XRF) and X-ray Absorption Near Edge Spectroscopy (XANES). XRF data analyzed coupling standard and statistical methods were used to distinguish the composition of the alloy constituting the coins from that of successive deposits processes. Our analysis presents a quantification of the trace elements present in the metallic alloy providing interesting details for historical insight.

View Article and Find Full Text PDF

X-ray absorption fine-structure (XAFS) spectroscopy can assess the chemical speciation of the elements providing their coordination and oxidation state, information generally hidden to other techniques. In the case of trace elements, achieving a good quality XAFS signal poses several challenges, as it requires high photon flux, counting statistics and detector linearity. Here, a new multi-element X-ray fluorescence detector is presented, specifically designed to probe the chemical speciation of trace 3d elements down to the p.

View Article and Find Full Text PDF

This work reports about a novel approach for investigating surface processes during the early stages of galvanic corrosion of stainless steelby employing ultra-thin films and synchrotron x-radiation. Characterized by x-ray techniques and voltammetry, such films, sputter deposited from austenitic steel, were found representing useful replicas of the target material. Typical for stainless steel, the surface consists of a passivation layer of Fe- and Cr-oxides, a couple of nm thick, that is depleted of Ni.

View Article and Find Full Text PDF

Zinc incorporation into marine bivalve shells belonging to different genera (Donax, Glycymeris, Lentidium, and Chamelea) grown in mine-polluted seabed sediments (Zn up to 1% w/w) was investigated using x-ray diffraction (XRD), chemical analysis, soft x-ray microscopy combined with low-energy x-ray fluorescence (XRF) mapping, x-ray absorption spectroscopy (XAS), and transmission electron microscopy (TEM). These bivalves grew their shells, producing aragonite as the main biomineral and they were able to incorporate up to 2.0-80 mg/kg of Zn, 5.

View Article and Find Full Text PDF