Publications by authors named "Carlo Sansone"

In the field of veterinary medicine, the detection of parasite eggs in the fecal samples of livestock animals represents one of the most challenging tasks, since their spread and diffusion may lead to severe clinical disease. Nowadays, the scanning procedure is typically performed by physicians with professional microscopes and requires a significant amount of time, domain knowledge, and resources. The Kubic FLOTAC Microscope (KFM) is a compact, low-cost, portable digital microscope that can autonomously analyze fecal specimens for parasites and hosts in both field and laboratory settings.

View Article and Find Full Text PDF

In biomedical image processing, Deep Learning (DL) is increasingly exploited in various forms and for diverse purposes. Despite unprecedented results, the huge number of parameters to learn, which necessitates a substantial number of annotated samples, remains a significant challenge. In medical domains, obtaining high-quality labelled datasets is still a challenging task.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates neurological features of Fabry disease (FD) by using deep learning to estimate brain age and assess whether FD patients' brains appear older than those of healthy controls.
  • - A model was trained on a large dataset of healthy brain scans to generate brain age predictions, revealing that FD patients had a significant brain-age difference compared to healthy controls, indicating a potential biomarker for disease severity.
  • - Findings showed that this brain-age difference (brain-PAD) correlates with measures of disease severity, such as the Fabry stabilization index and brain volume reduction, suggesting that brain-PAD can serve as an important indicator of neurological decline in FD.
View Article and Find Full Text PDF

Alzheimer's Disease is the most common cause of dementia, whose progression spans in different stages, from very mild cognitive impairment to mild and severe conditions. In clinical trials, Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) are mostly used for the early diagnosis of neurodegenerative disorders since they provide volumetric and metabolic function information of the brain, respectively. In recent years, Deep Learning (DL) has been employed in medical imaging with promising results.

View Article and Find Full Text PDF

In Biomedical Named Entity Recognition (BioNER), the use of current cutting-edge deep learning-based methods, such as deep bidirectional transformers (e.g. BERT, GPT-3), can be substantially hampered by the absence of publicly accessible annotated datasets.

View Article and Find Full Text PDF

The United Nations Framework Convention on Climate Change (UNFCCC) has recently established the Reducing Emissions from Deforestation and forest Degradation (REDD+) program, which requires countries to report their carbon emissions and sink estimates through national greenhouse gas inventories (NGHGI). Thus, developing automatic systems capable of estimating the carbon absorbed by forests without in situ observation becomes essential. To support this critical need, in this work, we introduce ReUse, a simple but effective deep learning approach to estimate the carbon absorbed by forest areas based on remote sensing.

View Article and Find Full Text PDF

Background: The incidence of breast cancer metastasis has decreased over the years. However, 20-30% of patients with early breast cancer still die from metastases. The purpose of this study is to evaluate the performance of a Deep Learning Convolutional Neural Networks (CNN) model to predict the risk of distant metastasis using 3T-MRI DCE sequences (Dynamic Contrast-Enhanced).

View Article and Find Full Text PDF

Glioblastoma Multiforme (GBM) is considered one of the most aggressive malignant tumors, characterized by a tremendously low survival rate. Despite alkylating chemotherapy being typically adopted to fight this tumor, it is known that O(6)-methylguanine-DNA methyltransferase (MGMT) enzyme repair abilities can antagonize the cytotoxic effects of alkylating agents, strongly limiting tumor cell destruction. However, it has been observed that MGMT promoter regions may be subject to methylation, a biological process preventing MGMT enzymes from removing the alkyl agents.

View Article and Find Full Text PDF

Background: The axillary lymph node status (ALNS) is one of the most important prognostic factors in breast cancer (BC) patients, and it is currently evaluated by invasive procedures. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), highlights the physiological and morphological characteristics of primary tumor tissue. Deep learning approaches (DL), such as convolutional neural networks (CNNs), are able to autonomously learn the set of features directly from images for a specific task.

View Article and Find Full Text PDF

The Prostate Imaging Reporting and Data System (PI-RADS) classification is based on a scale of values from 1 to 5. The value is assigned according to the probability that a finding is a malignant tumor (prostate carcinoma) and is calculated by evaluating the signal behavior in morphological, diffusion, and post-contrastographic sequences. A PI-RADS score of 3 is recognized as the equivocal likelihood of clinically significant prostate cancer, making its diagnosis very challenging.

View Article and Find Full Text PDF

Objectives: To stratify patients with multiple sclerosis (pwMS) based on brain MRI-derived volumetric features using unsupervised machine learning.

Methods: The 3-T brain MRIs of relapsing-remitting pwMS including 3D-T1w and FLAIR-T2w sequences were retrospectively collected, along with Expanded Disability Status Scale (EDSS) scores and long-term (10 ± 2 years) clinical outcomes (EDSS, cognition, and progressive course). From the MRIs, volumes of demyelinating lesions and 116 atlas-defined gray matter regions were automatically segmented and expressed as z-scores referenced to external populations.

View Article and Find Full Text PDF

The recent spread of Deep Learning (DL) in medical imaging is pushing researchers to explore its suitability for lesion segmentation in Dynamic Contrast-Enhanced Magnetic-Resonance Imaging (DCE-MRI), a complementary imaging procedure increasingly used in breast-cancer analysis. Despite some promising proposed solutions, we argue that a "naive" use of DL may have limited effectiveness as the presence of a contrast agent results in the acquisition of multimodal 4D images requiring thorough processing before training a DL model. We thus propose a pipelined approach where each stage is intended to deal with or to leverage a peculiar characteristic of breast DCE-MRI data: the use of a breast-masking pre-processing to remove non-breast tissues; the use of Three-Time-Points (3TP) slices to effectively highlight contrast agent time course; the application of a motion-correction technique to deal with patient involuntary movements; the leverage of a modified U-Net architecture tailored on the problem; and the introduction of a new "Eras/Epochs" training strategy to handle the unbalanced dataset while performing a strong data augmentation.

View Article and Find Full Text PDF

Nowadays, Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) has demonstrated to be a valid complementary diagnostic tool for early detection and diagnosis of breast cancer. However, without a CAD (Computer Aided Detection) system, manual DCE-MRI examination can be difficult and error-prone. The early stage of breast tissue segmentation, in a typical CAD, is crucial to increase reliability and reduce the computational effort by reducing the number of voxels to analyze and removing foreign tissues and air.

View Article and Find Full Text PDF

Background And Objective: The indirect immunofluorescence (IIF) on HEp-2 cells is the recommended technique for the detection of antinuclear antibodies. However, it is burdened by some limitations, as it is time consuming and subjective, and it requires trained personnel. In other fields the adoption of deep neural networks has provided an effective high-level abstraction of the raw data, resulting in the ability to automatically generate optimized high-level features.

View Article and Find Full Text PDF

Background And Aim: Lung ultrasound has been used to describe common respiratory diseases both by visual and computer-assisted gray scale analysis. In the present paper, we compare both methods in assessing neonatal respiratory status keeping two oxygenation indexes as standards.

Patients And Methods: Neonates admitted to the NICU for respiratory distress were enrolled.

View Article and Find Full Text PDF

Radiomics leverages existing image datasets to provide non-visible data extraction via image post-processing, with the aim of identifying prognostic, and predictive imaging features at a sub-region of interest level. However, the application of radiomics is hampered by several challenges such as lack of image acquisition/analysis method standardization, impeding generalizability. As of yet, radiomics remains intriguing, but not clinically validated.

View Article and Find Full Text PDF

Background: In breast magnetic resonance imaging (MRI) analysis for lesion detection and classification, radiologists agree that both morphological and dynamic features are important to differentiate benign from malignant lesions. We propose a multiple classifier system (MCS) to classify breast lesions on dynamic contrast-enhanced MRI (DCE-MRI) combining morphological features and dynamic information.

Methods: The proposed MCS combines the results of two classifiers trained with dynamic and morphological features separately.

View Article and Find Full Text PDF

We performed a systematic review of several pattern analysis approaches for classifying breast lesions using dynamic, morphological, and textural features in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Several machine learning approaches, namely artificial neural networks (ANN), support vector machines (SVM), linear discriminant analysis (LDA), tree-based classifiers (TC), and Bayesian classifiers (BC), and features used for classification are described. The findings of a systematic review of 26 studies are presented.

View Article and Find Full Text PDF

Electrocardiography (ECG) has been recently proposed as biometric trait for identification purposes. Intra-individual variations of ECG might affect identification performance. These variations are mainly due to Heart Rate Variability (HRV).

View Article and Find Full Text PDF

Computer systems for Electrocardiogram (ECG) analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units) or in prompt detection of dangerous events (e.

View Article and Find Full Text PDF

We present an algorithm for graph isomorphism and subgraph isomorphism suited for dealing with large graphs. A first version of the algorithm has been presented in a previous paper, where we examined its performance for the isomorphism of small and medium size graphs. The algorithm is improved here to reduce its spatial complexity and to achieve a better performance on large graphs; its features are analyzed in detail with special reference to time and memory requirements.

View Article and Find Full Text PDF