Space-time modulation of electromagnetic parameters offers novel exciting possibilities for advanced field manipulations. In this study, we explore wave scattering from a time-varying interface characterized by a Lorentz-type dispersion with a steplike temporal variation in its parameters. Our findings reveal a new process: an unconventional frequency generation at the natural resonances of the system.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
We studied the magneto-optical Kerr effect (MOKE) of two-dimensional (2D) heterostructure CrI/InSe/CrI using density functional theory calculations and symmetry analysis. The spontaneous polarization in the InSe ferroelectric layer and the antiferromagnetic ordering in CrI layers break the mirror and the time-reversal symmetry, thus activating MOKE. We show that the Kerr angle can be reversed by either the polarization or the antiferromagnetic order parameter.
View Article and Find Full Text PDFThe control of heat at the nanoscale via the excitation of localized surface plasmons in nanoparticles (NPs) irradiated with light holds great potential in several fields (cancer therapy, catalysis, desalination). To date, most thermoplasmonic applications are based on Ag and Au NPs, whose cost of raw materials inevitably limits the scalability for industrial applications requiring large amounts of photothermal NPs, as in the case of desalination plants. On the other hand, alternative nanomaterials proposed so far exhibit severe restrictions associated with the insufficient photothermal efficacy in the visible, the poor chemical stability, and the challenging scalability.
View Article and Find Full Text PDFWe study a class of temporal metamaterials characterized by time-varying dielectric permittivity waveforms of duration much smaller than the characteristic wave-dynamical timescale. In the analogy between spatial and temporal metamaterials, such a short-pulsed regime can be viewed as the temporal counterpart of metasurfaces. We introduce a general and compact analytical formalism for modeling the interaction of a short-pulsed metamaterial with an electromagnetic wave packet.
View Article and Find Full Text PDFHigh-performance THz photodetection is unprecedentedly accessed by integrating a topological Dirac (Weyl) semimetal in a carefully designed antenna at deep-subwavelength scales.
View Article and Find Full Text PDFOptical parametric oscillators are widely used as pulsed and continuous-wave tunable sources for innumerable applications, such as quantum technologies, imaging, and biophysics. A key drawback is material dispersion, which imposes a phase-matching condition that generally entails a complex design and setup, thus hindering tunability and miniaturization. Here we show that the burden of phase-matching is surprisingly absent in parametric micro-resonators utilizing mono-layer transition-metal dichalcogenides as quadratic nonlinear materials.
View Article and Find Full Text PDFWe show that a homogeneous and isotropic slab, illuminated by a circularly polarized beam with no topological charge, produces vortices of order 2 in the opposite circularly polarized components of the reflected and transmitted fields, as a consequence of the transverse magnetic and transverse electric asymmetric response of the rotationally invariant system. In addition, in the epsilon-near-zero regime, we find that vortex generation is remarkably efficient in subwavelength thick slabs up to the paraxial regime. This physically stems from the fact that a vacuum paraxial field can excite a nonparaxial field inside an epsilon-near-zero slab since it hosts slowly varying fields over physically large portions of the bulk.
View Article and Find Full Text PDFWe investigate the interaction of two pulses (pump and probe) scattered by a nonlinear epsilon-near-zero (ENZ) slab whose thickness is comparable with the ENZ wavelength. We show that when the probe has a narrow spectrum localized around the ENZ wavelength, its transmission is dramatically affected by the intensity of the pump. Conversely, if the probe is not in the ENZ regime, its propagation is not noticeably affected by the pump.
View Article and Find Full Text PDFPeriodic patterns of photo-excited carriers on a semiconductor surface profoundly modifies its effective permittivity, creating a stationary all-optical quasi-metallic metamaterial. Intriguingly, one can tailor its artificial birefringence to modulate with unprecedented degrees of freedom both the amplitude and phase of a quantum cascade laser (QCL) subject to optical feedback from such an anisotropic reflector. Here, we conceive and devise a reconfigurable photo-designed Terahertz (THz) modulator and exploit it in a proof-of-concept experiment to control the emission properties of THz QCLs.
View Article and Find Full Text PDFWe suggest that electromagnetic chirality, generally displayed by 3D or 2D complex chiral structures, can occur in 1D patterned composites whose components are achiral. This feature is highly unexpected in a 1D system which is geometrically achiral since its mirror image can always be superposed onto it by a 180 deg rotation. We analytically evaluate from first principles the bianisotropic response of multilayered metamaterials and we show that the chiral tensor is not vanishing if the system is geometrically one-dimensional chiral; i.
View Article and Find Full Text PDFWe theoretically investigate the homogenization of the dielectric response to transverse electric waves of a transverse grating characterized by the Kapitza condition; i.e., the permittivity is rapidly modulated with a modulation depth scaling as the large wavelength-to-modulation-period ratio.
View Article and Find Full Text PDFWe theoretically investigate the terahertz (THz) dielectric response of a semiconductor slab hosting a tunable grating photogenerated by the interference of two tilted infrared (IR) plane waves. In the case where the grating period is much smaller than the THz wavelength, we numerically evaluate the ordinary and extraordinary component of the effective permittivity tensor by resorting to electromagnetic full-wave simulation coupled to the dynamics of charge carriers excited by IR radiation. We show that the photo-induced metamaterial optical response can be tailored by varying the grating and it ranges from birefringent to hyperbolic to anisotropic negative dielectric without resorting to microfabrication.
View Article and Find Full Text PDFWe show that in the presence of a rapidly modulated dielectric permittivity with a large modulation depth (Kapitza medium) a novel and robust regime of diffractionless electromagnetic propagation occurs. This happens when the mean value to depth ratio of the dielectric profile is comparable to the small ratio between the modulation period and the wavelength. We show that the standard effective medium theory is inadequate to describe the proposed regime and that its occurrence is not substantially hampered by medium losses.
View Article and Find Full Text PDFWe theoretically consider infrared-driven hyperbolic metamaterials able to spatially filter terahertz (THz) radiation. The metamaterial is a slab made of alternating semiconductor and dielectric layers whose homogenized uniaxial response, at THz frequencies, shows principal permittivities of different signs. The gap provided by metamaterial hyperbolic dispersion allows the slab to stop spatial frequencies within a bandwidth tunable by changing the infrared radiation intensity.
View Article and Find Full Text PDFWe consider a hybrid system consisting of a centrosymmetric photorefractive crystal in contact with a vertical-cavity surface-emitting laser. We numerically investigate the generation and control of cavity solitons (CSs) by propagating a plane wave through electro-activated solitonic waveguides in the crystal. In such a compound scheme, which couples a propagative/conservative field dynamics to a bistable/dissipative one, we show that by changing the electro-activation voltage of the crystal, the CSs can be turned on and shifted with controlled velocity across the device section, on the scale of tens of nanoseconds.
View Article and Find Full Text PDFWe consider optical propagation through a centrosymmetric photorefractive crystal with the externally applied bias voltage modulated along the optical propagation direction. We analytically prove that, if the modulation scale is smaller than the optical diffraction length, the resulting effective nonlinearity has an even parity in the transverse plane for an even-symmetric intensity profile and supports bending-free solitons down to few-micrometer beam widths. Numerical integration of the full photorefractive model for light-matter interaction allows us to confirm the feasibility of these miniaturized solitons and, for longer modulation periods, to investigate the excitation of self-trapped wiggling optical beams.
View Article and Find Full Text PDFTransverse instabilities are shown to accompany counterpropagation of optical beams through reflection gratings in Kerr media. The instability threshold of continuous waves is analytically derived, and it is shown that the presence of the grating broadens and narrows the stability region of plane waves in focusing and defocusing media, respectively. Furthermore, counterpropagating soliton stability is numerically investigated and compared with the transverse modulation instability analysis, revealing an underlying physical link.
View Article and Find Full Text PDFWe investigate (1+1D) spatial optical solitons embedded in a fixed-volume grating in centrosymmetric photorefractive crystals. We numerically identify a two-parameter soliton family and deduce both its existence surface and soliton profiles. For shallow gratings, the soliton Fourier spectrum exhibits three lobes located at the reciprocal lattice points -K, 0, and K.
View Article and Find Full Text PDFWe analytically predict the existence of both spatial bright and dark counterpropagating solitons in a reflection grating in the presence of the Kerr nonlinearity. The basic trapping mechanism consists of a twofold balance where diffraction is compensated by self-focusing and reflection is altered by the nonlinear-induced interferometric grating. We find that, whenever the spectral soliton profile lies within the grating stop band, bright and dark solitons exist only if the mutual phase of the counterpropagating solitons is pi or 0, respectively.
View Article and Find Full Text PDF