Publications by authors named "Carlo Piccardi"

Identifying networks with similar characteristics in a given ensemble, or detecting pattern discontinuities in a temporal sequence of networks, are two examples of tasks that require an effective metric capable of quantifying network (dis)similarity. Here we propose a method based on a global portrait of graph properties built by processing local nodes features. More precisely, a set of dissimilarity measures is defined by elaborating the distributions, over the network, of a few egonet features, namely the degree, the clustering coefficient, and the egonet persistence.

View Article and Find Full Text PDF

In this paper, we propose a graphlet-based topological algorithm for the investigation of the brain network at (RS). To this aim, we model the brain as a graph, where (labeled) nodes correspond to specific cerebral areas and links are weighted connections determined by the intensity of the (fMRI). Then, we select a number of working , namely, connected and non-isomorphic induced subgraphs.

View Article and Find Full Text PDF

In recent years, malicious information had an explosive growth in social media, with serious social and political backlashes. Recent important studies, featuring large-scale analyses, have produced deeper knowledge about this phenomenon, showing that misleading information spreads faster, deeper and more broadly than factual information on social media, where echo chambers, algorithmic and human biases play an important role in diffusion networks. Following these directions, we explore the possibility of classifying news articles circulating on social media based exclusively on a topological analysis of their diffusion networks.

View Article and Find Full Text PDF

With the impressive growth of available data and the flexibility of network modelling, the problem of devising effective quantitative methods for the comparison of networks arises. Plenty of such methods have been designed to accomplish this task: most of them deal with undirected and unweighted networks only, but a few are capable of handling directed and/or weighted networks too, thus properly exploiting richer information. In this work, we contribute to the effort of comparing the different methods for comparing networks and providing a guide for the selection of an appropriate one.

View Article and Find Full Text PDF

Trade networks, across which countries distribute their products, are crucial components of the globalized world economy. Their structure affects the mechanism of propagation of shocks from country to country, as observed in a very sharp way in the past decade, characterized by economic uncertainty in many parts of the world. Such trade structures are strongly heterogeneous across products, given the different features of the countries which buy and sell goods.

View Article and Find Full Text PDF

The problem of link prediction has recently received increasing attention from scholars in network science. In social network analysis, one of its aims is to recover missing links, namely connections among actors which are likely to exist but have not been reported because data are incomplete or subject to various types of uncertainty. In the field of criminal investigations, problems of incomplete information are encountered almost by definition, given the obvious anti-detection strategies set up by criminals and the limited investigative resources.

View Article and Find Full Text PDF

We analyze the patterns of import/export bilateral relations, with the aim of assessing the relevance and shape of "preferentiality" in countries' trade decisions. Preferentiality here is defined as the tendency to concentrate trade on one or few partners. With this purpose, we adopt a systemic approach through the use of the tools of complex network analysis.

View Article and Find Full Text PDF

The effects of network topology on the emergence and persistence of infectious diseases have been broadly explored in recent years. However, the influence of the vital dynamics of the hosts (i.e.

View Article and Find Full Text PDF

When analyzing important classes of complex interconnected systems, link directionality can hardly be neglected if a precise and effective picture of the structure and function of the system is needed. If community analysis is performed, the notion of "community" itself is called into question, since the property of having a comparatively looser external connectivity could refer to the inbound or outbound links only or to both categories. In this paper, we introduce the notions of in-, out-, and in-/out-community in order to correctly classify the directedness of the interaction of a subnetwork with the rest of the system.

View Article and Find Full Text PDF

Disclosing the main features of the structure of a network is crucial to understand a number of static and dynamic properties, such as robustness to failures, spreading dynamics, or collective behaviours. Among the possible characterizations, the core-periphery paradigm models the network as the union of a dense core with a sparsely connected periphery, highlighting the role of each node on the basis of its topological position. Here we show that the core-periphery structure can effectively be profiled by elaborating the behaviour of a random walker.

View Article and Find Full Text PDF

The World Trade Web (WTW), which models the international transactions among countries, is a fundamental tool for studying the economics of trade flows, their evolution over time, and their implications for a number of phenomena, including the propagation of economic shocks among countries. In this respect, the possible existence of communities is a key point, because it would imply that countries are organized in groups of preferential partners. In this paper, we use four approaches to analyze communities in the WTW between 1962 and 2008, based, respectively, on modularity optimization, cluster analysis, stability functions, and persistence probabilities.

View Article and Find Full Text PDF

Identifying communities (or clusters), namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance. We propose a sharp definition that is based on a quality threshold.

View Article and Find Full Text PDF

The synchronous behaviour of interacting communities is studied in this paper. Each community is described by a tritrophic food chain model, and the communities interact through a network with arbitrary topology, composed of patches and migration corridors. The analysis of the local synchronization properties (via the master stability function approach) shows that, if only one species can migrate, the dispersal of the consumer (i.

View Article and Find Full Text PDF

Highly heterogeneous degree distributions yield efficient spreading of simple epidemics through networks, but can be inefficient with more complex epidemiological processes. We study diseases with nonlinear force of infection whose prevalences can abruptly collapse to zero while decreasing the transmission parameters. We find that scale-free networks can be unable to support diseases that, on the contrary, are able to persist at high endemic levels in homogeneous networks with the same average degree.

View Article and Find Full Text PDF

Symbolic time-series analysis is used for estimating the parameters of chaotic systems. It is assumed that a "target model" (i.e.

View Article and Find Full Text PDF

Symbolic analysis of time series is extended to systems with inputs, in order to obtain input/output symbolic models to be used for control policy design. For that, the notion of symbolic word is broadened to possibly include past input values. Then, a model is derived in the form of a controlled Markov chain, i.

View Article and Find Full Text PDF