Objective: The increasing resistance of yeasts against commonly used antifungal drugs dictates the need for novel antifungal compounds. Human lactoferrin-based peptides show a broad spectrum of antimicrobial activities. Various assays were performed to find the optimal growth conditions of the yeasts and to assess cell viability, using media with low lipid content to avoid peptide binding to medium components.
View Article and Find Full Text PDFBackground: Plant biomass is the major substrate for the production of biofuels and biochemicals, as well as food, textiles and other products. It is also the major carbon source for many fungi and enzymes of these fungi are essential for the depolymerization of plant polysaccharides in industrial processes. This is a highly complex process that involves a large number of extracellular enzymes as well as non-hydrolytic proteins, whose production in fungi is controlled by a set of transcriptional regulators.
View Article and Find Full Text PDFThere is an urgent need to develop new antimicrobial drugs especially for combating the rise of infections caused by multi-resistant pathogens such as MRSA and VRSA. The problem of antibiotic resistant micro-organisms is expected to increase disproportionally and controlling of infections is becoming difficult because of the rapid spread of those micro-organisms. Primary therapy with classical antibiotics is becoming more ineffective.
View Article and Find Full Text PDFThe synthetic antimicrobial peptide representative of the first 11 N-terminal amino acids of human lactoferrin (hLF 1-11) kills multidrug-resistant Staphylococcus aureus (MRSA). This study displays antimicrobial activity of hLF 1-11, via various routes of administration, against MRSA infections in mice. Radiolabeling hLF 1-11 with technetium-99m ((99m)Tc-hLF 1-11) enables scintigraphic monitoring directly after administration.
View Article and Find Full Text PDFBackground: Because the human lactoferrin-derived peptide, hLF(1-11), exerts potent in vitro candidacidal activity, we investigated whether it displays antifungal activity against disseminated Candida albicans infections.
Methods: Neutropenic mice were intravenously infected with C. albicans and, 24 h later, were injected with hLF(1-11); 18 h later, the number of viable yeasts in the kidneys was determined microbiologically, the size and number of infectious foci were determined histologically, and serum cytokine levels were determined by immunoassays.
Cationic antimicrobial peptides are good candidates for new diagnostics and antimicrobial agents. They can rapidly kill a broad range of microbes and have additional activities that have impact on the quality and effectiveness of innate responses and inflammation. Furthermore, the challenge of bacterial resistance to conventional antibiotics and the unique mode of action of antimicrobial peptides have made such peptides promising candidates for the development of a new class of antibiotics.
View Article and Find Full Text PDFHomodimerization of histatin-derived peptides generally led to improved bactericidal activity against Staphylococcus aureus in vitro. In vivo, monomers and dimers were equally active in killing bacteria in mice with a soft tissue infection. Altogether, these peptides are promising compounds for the development of novel therapeutics against infections with drug-resistant bacteria.
View Article and Find Full Text PDFThe presence and antimicrobial activity of antimicrobial peptides (AMPs) has been widely recognized as an evolutionary preserved part of the innate immune system. Based on evidence in animal models and humans, AMPs are now positioned as novel anti-infective agents. The current study aimed to evaluate the potential antimicrobial activity of ubiquicidin and small synthetic fragments thereof towards methicillin resistant Staphylococcus aureus (MRSA), as a high priority target for novel antibiotics.
View Article and Find Full Text PDFIn order to analyze the clinical potential of two antimicrobial peptides, human lactoferrin 1-11 (hLF1-11) and synthetic histatin analogue Dhvar-5, we measured the killing effect on bacteria, and the potential toxicity on erythrocytes and bone cells. The antimicrobial activity was determined in a killing assay on six strains, including methicillin resistant Staphylococcus Aureus. The effect on human erythrocytes and MC3T3 mouse bone cells was measured with a hemolysis assay and a viability assay, respectively.
View Article and Find Full Text PDFThe lactoferrin-derived peptide hLF(1-11), but not its control peptide, was highly effective against five multidrug-resistant Acinetobacter baumannii strains in vitro (3 to 4 log reduction) and against four of these strains in an experimental infection in mice (2 to 3 log reduction). Therefore, this peptide is a promising candidate as a novel agent against infections with multidrug-resistant A. baumannii.
View Article and Find Full Text PDFObjectives: Earlier studies showed that mitochondrial damage is a hallmark of the candidacidal activity of an N-terminal peptide of human lactoferrin, further referred to as hLF(1-11). Since uptake of Ca(2+) by mitochondria may be essential for their activation, the aim of this study was to define the role of Ca(2+) in killing of Candida albicans by the hLF(1-11) peptide.
Methods: The effect of compounds interfering with Ca(2+) homeostasis on the hLF(1-11)-induced candidacidal activity, changes in mitochondrial membrane potential, and reactive oxygen species production were evaluated using a killing assay, rhodamine 123 staining, and 2',7'-dichlorofluorescein diacetate, respectively.
Unlabelled: Based on our earlier observation that (99m)Tc-UBI 29-41, a radiolabeled peptide derived from ubiquicidin (UBI), discriminates between infections and sterile inflammatory processes, we considered the possibility that this tracer could be used for monitoring the efficacy of antibacterial agents in animals infected with Staphylococcus aureus.
Methods: We injected (99m)Tc-UBI 29-41 into S. aureus-infected mice after treatment with various doses of cloxacillin or erythromycin.
In light of the need for new antifungal regimens, we report that at noncandidacidal concentrations, the lactoferrin-derived peptide hLF(1-11), which is highly active against fluconazole-resistant Candida albicans, acts synergistically with fluconazole against this yeast and a fluconazole-sensitive C. albicans strain as well as C. glabrata, C.
View Article and Find Full Text PDF