Publications by authors named "Carlo Metta"

This paper focuses on the use of local Explainable Artificial Intelligence (XAI) methods, particularly the Local Rule-Based Explanations (LORE) technique, within healthcare and medical settings. It emphasizes the critical role of interpretability and transparency in AI systems for diagnosing diseases, predicting patient outcomes, and creating personalized treatment plans. While acknowledging the complexities and inherent trade-offs between interpretability and model performance, our work underscores the significance of local XAI methods in enhancing decision-making processes in healthcare.

View Article and Find Full Text PDF

A crucial challenge in critical settings like medical diagnosis is making deep learning models used in decision-making systems interpretable. Efforts in Explainable Artificial Intelligence (XAI) are underway to address this challenge. Yet, many XAI methods are evaluated on broad classifiers and fail to address complex, real-world issues, such as medical diagnosis.

View Article and Find Full Text PDF