Publications by authors named "Carlo Mazzocca"

Federated learning (FL) enables collaborative training of a machine learning (ML) model across multiple parties, facilitating the preservation of users' and institutions' privacy by maintaining data stored locally. Instead of centralizing raw data, FL exchanges locally refined model parameters to build a global model incrementally. While FL is more compliant with emerging regulations such as the European General Data Protection Regulation (GDPR), ensuring the right to be forgotten in this context-allowing FL participants to remove their data contributions from the learned model-remains unclear.

View Article and Find Full Text PDF

The recent widespread novel network technologies for programming data planes are remarkably enhancing the customization of data packet processing. In this direction, the Programming Protocol-independent Packet Processors (P4) is envisioned as a disruptive technology, capable of configuring network devices in a highly customizable way. P4 enables network devices to adapt their behaviors to mitigate malicious attacks (e.

View Article and Find Full Text PDF