Cancer is pervasive across multicellular species, but what explains the differences in cancer prevalence across species? Using 16,049 necropsy records for 292 species spanning three clades of tetrapods (amphibians, sauropsids, and mammals), we found that neoplasia and malignancy prevalence increases with adult mass (contrary to Peto's paradox) and somatic mutation rate but decreases with gestation time. The relationship between adult mass and malignancy prevalence was only apparent when we controlled for gestation time. Evolution of cancer susceptibility appears to have undergone sudden shifts followed by stabilizing selection.
View Article and Find Full Text PDFOne of the main reasons we have not been able to cure cancers is that treatments select for drug-resistant cells. Pest managers face similar challenges with pesticides selecting for pesticide-resistant insects, resulting in similar mechanisms of resistance. Pest managers have developed 10 principles that could be translated to controlling cancers: (i) prevent onset, (ii) monitor continuously, (iii) identify thresholds below which there will be no intervention, (iv) change interventions in response to burden, (v) preferentially select nonchemical control methods, (vi) use target-specific drugs, (vii) use the lowest effective dose, (viii) reduce cross-resistance, (ix) evaluate success based on long-term management, and (x) forecast growth and response.
View Article and Find Full Text PDFThe clonal evolution model of cancer was developed in the 1950s-1970s and became central to cancer biology in the twenty-first century, largely through studies of cancer genetics. Although it has proven its worth, its structure has been challenged by observations of phenotypic plasticity, non-genetic forms of inheritance, non-genetic determinants of clone fitness and non-tree-like transmission of genes. There is even confusion about the definition of a clone, which we aim to resolve.
View Article and Find Full Text PDFBackground And Objectives: Cancer develops across nearly every species. However, cancer occurs at unexpected and widely different rates throughout the animal kingdom. The reason for this variation in cancer susceptibility remains an area of intense investigation.
View Article and Find Full Text PDFThe last few years have seen a surge of interest from field ecologists and evolutionary biologists to study neoplasia and cancer in wildlife. This contributes to the One Health Approach, which investigates health issues at the intersection of people, wild and domestic animals, together with their changing environments. Nonetheless, the emerging field of wildlife cancer is currently constrained by methodological limitations in detecting cancer using non-invasive sampling.
View Article and Find Full Text PDFProgression from pre-cancers like ductal carcinoma (DCIS) to invasive disease (cancer) is driven by somatic evolution and is altered by clinical interventions. We hypothesized that genetic and/or phenotypic intra-tumor heterogeneity would predict clinical outcomes for DCIS since it serves as the substrate for natural selection among cells. We profiled two samples from two geographically distinct foci from each DCIS in both cross-sectional (N = 119) and longitudinal cohorts (N = 224), with whole exome sequencing, low-pass whole genome sequencing, and a panel of immunohistochemical markers.
View Article and Find Full Text PDFBackground And Objectives: Cancer is a disease that affects nearly all multicellular life, including the broad and diverse taxa of Aves. While little is known about the factors that contribute to cancer risk across Aves, life history trade-offs may explain some of this variability in cancer prevalence. We predict birds with high investment in reproduction may have a higher likelihood of developing cancer.
View Article and Find Full Text PDFCancer, one of the leading causes of death worldwide, is a disease characterized by uncontrolled cell growth within the body. While there have been many improvements in the treatment of cancer clinically, there is now an urgent need to improve cancer-related communication. This study explores the impact of online health information, specifically cancer-related information and prevention, among members of the general public.
View Article and Find Full Text PDFCells in obligately multicellular organisms by definition have aligned fitness interests, minimum conflict, and cannot reproduce independently. However, some cells eat other cells within the same body, sometimes called cell cannibalism. Such cell-in-cell events have not been thoroughly discussed in the framework of major transitions to multicellularity.
View Article and Find Full Text PDFImmune system control is a major hurdle that cancer evolution must circumvent. The relative timing and evolutionary dynamics of subclones that have escaped immune control remain incompletely characterized, and how immune-mediated selection shapes the epigenome has received little attention. Here, we infer the genome- and epigenome-driven evolutionary dynamics of tumour-immune coevolution within primary colorectal cancers (CRCs).
View Article and Find Full Text PDFAdaptive therapy, an ecologically inspired approach to cancer treatment, aims to overcome resistance and reduce toxicity by leveraging competitive interactions between drug-sensitive and drug-resistant subclones, prioritizing patient survival and quality of life instead of killing the maximum number of cancer cells. In preparation for a clinical trial, we used endocrine-resistant MCF7 breast cancer to stimulate second-line therapy and tested adaptive therapy using capecitabine, gemcitabine, or their combination in a mouse xenograft model. Dose modulation adaptive therapy with capecitabine alone increased survival time relative to MTD but not statistically significantly (HR = 0.
View Article and Find Full Text PDFThe mouse is a widely used model organism in cancer research. However, no computational methods exist to identify cancer driver genes in mice due to a lack of labeled training data. To address this knowledge gap, we adapted the GUST (Genes Under Selection in Tumors) model, originally trained on human exomes, to mouse exomes via transfer learning.
View Article and Find Full Text PDFDuctal carcinoma in situ (DCIS) and invasive breast cancer share many morphologic, proteomic, and genomic alterations. Yet in contrast to invasive cancer, many DCIS tumors do not progress and may remain indolent over decades. To better understand the heterogenous nature of this disease, we reconstructed the growth dynamics of 18 DCIS tumors based on the geo-spatial distribution of their somatic mutations.
View Article and Find Full Text PDFHershey and colleagues recently showed how clones in a triple-negative breast cancer cell line cooperate for their mutual fitness benefit. In this system, clones exchange soluble metabolites to increase their in vitro growth rate at low population densities, therefore mitigating the documented growth barrier that reduces individual fitness in small tumor cell populations (Allee effect). Such cooperation could aid important transitions in cancer progression in which cancer cell populations are small, like invasion or metastasis.
View Article and Find Full Text PDFCells in obligately multicellular organisms by definition have aligned fitness interests, minimum conflict, and cannot reproduce independently. However, some cells eat other cells within the same body, sometimes called cell cannibalism. Such cell-in-cell events have not been thoroughly discussed in the framework of major transitions to multicellularity.
View Article and Find Full Text PDFHighly effective cancer therapies often face limitations due to acquired resistance and toxicity. Adaptive therapy, an ecologically inspired approach, seeks to control therapeutic resistance and minimize toxicity by leveraging competitive interactions between drug-sensitive and drug-resistant subclones, prioritizing patient survival and quality of life over maximum cell kill. In preparation for a clinical trial in breast cancer, we used large populations of MCF7 cells to rapidly generate endocrine-resistance breast cancer cell line.
View Article and Find Full Text PDFCould diet and mean plasma glucose concentration (MPGluC) explain the variation in cancer prevalence across species? We collected diet, MPGluC, and neoplasia data for 160 vertebrate species from existing databases. We found that MPGluC negatively correlates with cancer and neoplasia prevalence, mostly of gastrointestinal organs. Trophic level positively correlates with cancer and neoplasia prevalence even after controlling for species MPGluC.
View Article and Find Full Text PDFCancer is pervasive across multicellular species, but what explains differences in cancer prevalence across species? Using 16,049 necropsy records for 292 species spanning three clades (amphibians, sauropsids and mammals) we found that neoplasia and malignancy prevalence increases with adult weight (contrary to Peto's Paradox) and somatic mutation rate, but decreases with gestation time. Evolution of cancer susceptibility appears to have undergone sudden shifts followed by stabilizing selection. Outliers for neoplasia prevalence include the common porpoise (<1.
View Article and Find Full Text PDFChimerism is a widespread phenomenon across the tree of life. It is defined as a multicellular organism composed of cells from other genetically distinct entities. This ability to 'tolerate' non-self cells may be linked to susceptibility to diseases like cancer.
View Article and Find Full Text PDFDefending against novel, repeated, or unpredictable attacks, while avoiding attacks on the 'self', are the central problems of both mammalian immune systems and computer systems. Both systems have been studied in great detail, but with little exchange of information across the different disciplines. Here, we present a conceptual framework for structured comparisons across the fields of biological immunity and cybersecurity, by framing the context of defense, considering different (combinations of) defensive strategies, and evaluating defensive performance.
View Article and Find Full Text PDFCancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer.
View Article and Find Full Text PDFCancers occur across species. Understanding what is consistent and varies across species can provide new insights into cancer initiation and evolution, with significant implications for animal welfare and wildlife conservation. We build a pan-species cancer digital pathology atlas (panspecies.
View Article and Find Full Text PDFOncogene amplification on extrachromosomal DNA (ecDNA) drives the evolution of tumours and their resistance to treatment, and is associated with poor outcomes for patients with cancer. At present, it is unclear whether ecDNA is a later manifestation of genomic instability, or whether it can be an early event in the transition from dysplasia to cancer. Here, to better understand the development of ecDNA, we analysed whole-genome sequencing (WGS) data from patients with oesophageal adenocarcinoma (EAC) or Barrett's oesophagus.
View Article and Find Full Text PDFCancer is pervasive across multicellular species, but what explains differences in cancer prevalence across species? Using 16,049 necropsy records for 292 species spanning three clades (amphibians, sauropsids and mammals) we found that neoplasia and malignancy prevalence increases with adult weight (contrary to Petos Paradox) and somatic mutation rate, but decreases with gestation time. Evolution of cancer susceptibility appears to have undergone sudden shifts followed by stabilizing selection. Outliers for neoplasia prevalence include the common porpoise (<1.
View Article and Find Full Text PDF