We consider a ring network of quadratic integrate-and-fire neurons with nonlocal synaptic and gap junction coupling. The corresponding neural field model supports solutions such as standing and traveling waves, and also lurching waves. We show that many of these solutions satisfy self-consistency equations which can be used to follow them as parameters are varied.
View Article and Find Full Text PDFWe study networks in the form of a lattice of nodes with a large number of phase oscillators and an auxiliary variable at each node. The only interactions between nodes are nearest-neighbor. The Ott/Antonsen ansatz is used to derive equations for the order parameters of the phase oscillators at each node, resulting in a set of coupled ordinary differential equations.
View Article and Find Full Text PDFWe consider a next generation neural field model which describes the dynamics of a network of theta neurons on a ring. For some parameters the network supports stable time-periodic solutions. Using the fact that the dynamics at each spatial location are described by a complex-valued Riccati equation we derive a self-consistency equation that such periodic solutions must satisfy.
View Article and Find Full Text PDFChimeras occur in networks of coupled oscillators and are characterized by coexisting groups of synchronous oscillators and asynchronous oscillators. We consider a network formed from N equal-sized populations at equally spaced points around a ring. We use the Ott/Antonsen ansatz to derive coupled ordinary differential equations governing the level of synchrony within each population and describe chimeras using a self-consistency argument.
View Article and Find Full Text PDFChimeras occur in networks of coupled oscillators and are characterized by the coexistence of synchronous and asynchronous groups of oscillators in different parts of the network. We consider a network of nonlocally coupled phase oscillators on an annular domain. The Ott/Antonsen ansatz is used to derive a continuum level description of the oscillators' expected dynamics in terms of a complex-valued order parameter.
View Article and Find Full Text PDFWe propose an approach to learn effective evolution equations for large systems of interacting agents. This is demonstrated on two examples, a well-studied system of coupled normal form oscillators and a biologically motivated example of coupled Hodgkin-Huxley-like neurons. For such types of systems there is no obvious space coordinate in which to learn effective evolution laws in the form of partial differential equations.
View Article and Find Full Text PDFPhys Rev E
February 2022
Chimeras occur in networks of two coupled populations of oscillators when the oscillators in one population synchronize while those in the other are asynchronous. We consider chimeras of this form in networks of planar oscillators for which one parameter associated with the dynamics of an oscillator is randomly chosen from a uniform distribution. A generalization of the previous approach [Laing, Phys.
View Article and Find Full Text PDFWe consider a ring network of theta neurons with non-local homogeneous coupling. We analyse the corresponding continuum evolution equation, analytically describing all possible steady states and their stability. By considering a number of different parameter sets, we determine the typical bifurcation scenarios of the network, and put on a rigorous footing some previously observed numerical results.
View Article and Find Full Text PDFA "bump" refers to a group of active neurons surrounded by quiescent ones while a "chimera" refers to a pattern in a network in which some oscillators are synchronized while the remainder are asynchronous. Both types of patterns have been studied intensively but are sometimes conflated due to their similar appearance and existence in similar types of networks. Here, we numerically study a hybrid system that linearly interpolates between a network of theta neurons that supports a bump at one extreme and a network of phase oscillators that supports a chimera at the other extreme.
View Article and Find Full Text PDFLarge collections of coupled, heterogeneous agents can manifest complex dynamical behavior presenting difficulties for simulation and analysis. However, if the collective dynamics lie on a low-dimensional manifold, then the original agent-based model may be approximated with a simplified surrogate model on and near the low-dimensional space where the dynamics live. Analytically identifying such simplified models can be challenging or impossible, but here we present a data-driven coarse-graining methodology for discovering such reduced models.
View Article and Find Full Text PDFWe consider large networks of theta neurons and use the Ott-Antonsen ansatz to derive degree-based mean-field equations governing the expected dynamics of the networks. Assuming random connectivity, we investigate the effects of varying the widths of the in- and out-degree distributions on the dynamics of excitatory or inhibitory synaptically coupled networks and gap junction coupled networks. For synaptically coupled networks, the dynamics are independent of the out-degree distribution.
View Article and Find Full Text PDFWinfree oscillators are phase oscillator models of neurons, characterized by their phase response curve and pulsatile interaction function. We use the Ott/Antonsen ansatz to study large heterogeneous networks of Winfree oscillators, deriving low-dimensional differential equations which describe the evolution of the expected state of networks of oscillators. We consider the effects of correlations between an oscillator's in-degree and out-degree, and between the in- and out-degrees of an "upstream" and a "downstream" oscillator (degree assortativity).
View Article and Find Full Text PDFWe present a method for assembling directed networks given a prescribed bi-degree (in- and out-degree) sequence. This method utilises permutations of initial adjacency matrix assemblies that conform to the prescribed in-degree sequence, yet violate the given out-degree sequence. It combines directed edge-swapping and constrained Monte-Carlo edge-mixing for improving approximations to the given out-degree sequence until it is exactly matched.
View Article and Find Full Text PDFSystems of coupled dynamical units (e.g., oscillators or neurons) are known to exhibit complex, emergent behaviors that may be simplified through coarse-graining: a process in which one discovers coarse variables and derives equations for their evolution.
View Article and Find Full Text PDFMany biological and neural systems can be seen as networks of interacting periodic processes. Importantly, their functionality, i.e.
View Article and Find Full Text PDFWe consider large networks of theta neurons on a ring, synaptically coupled with an asymmetric kernel. Such networks support stable "bumps" of activity, which move along the ring if the coupling kernel is asymmetric. We investigate the effects of the kernel asymmetry on the existence, stability, and speed of these moving bumps using continuum equations formally describing infinite networks.
View Article and Find Full Text PDFWe consider the effects of correlations between the in- and out-degrees of individual neurons on the dynamics of a network of neurons. By using theta neurons, we can derive a set of coupled differential equations for the expected dynamics of neurons with the same in-degree. A Gaussian copula is used to introduce correlations between a neuron's in- and out-degree, and numerical bifurcation analysis is used determine the effects of these correlations on the network's dynamics.
View Article and Find Full Text PDFPhys Rev E
October 2019
We consider networks formed from two populations of identical oscillators, with uniform strength all-to-all coupling within populations and also between populations with a different strength. Such systems are known to support chimera states in which oscillators within one population are perfectly synchronized while in the other the oscillators are incoherent and have a different mean frequency from those in the synchronous population. Assuming that the oscillators in the incoherent population always lie on a closed smooth curve C, we derive and analyze the dynamics of the shape of C and the probability density on C for four different types of oscillators.
View Article and Find Full Text PDFWe explore the feasibility of deriving generalised expressions for the probability mass function (PMF) of the final epidemic size of a Susceptible - Infected - Recovered (SIR) model on a finite network of an arbitrary number of nodes. Expressions for the probability that the infection progresses along a given pathway in a line of triangles (LoT) network are presented. Deriving expressions for the probability that the infection ends at any given node allows us to determine the corresponding final size of the epidemic, and hence produce PMFs of the final epidemic size.
View Article and Find Full Text PDFWe consider small networks of instantaneously coupled theta neurons. For inhibitory coupling and fixed parameter values, some initial conditions give chaotic solutions while others give quasiperiodic ones. This behaviour seems to result from the reversibility of the equations governing the networks' dynamics.
View Article and Find Full Text PDFWe consider finite and infinite all-to-all coupled networks of identical theta neurons. Two types of synaptic interactions are investigated: instantaneous and delayed (via first-order synaptic processing). Extensive use is made of the Watanabe/Strogatz (WS) ansatz for reducing the dimension of networks of identical sinusoidally-coupled oscillators.
View Article and Find Full Text PDFFinding accurate reduced descriptions for large, complex, dynamically evolving networks is a crucial enabler to their simulation, analysis, and ultimately design. Here, we propose and illustrate a systematic and powerful approach to obtaining good collective coarse-grained observables-variables successfully summarizing the detailed state of such networks. Finding such variables can naturally lead to successful reduced dynamic models for the networks.
View Article and Find Full Text PDFWe consider the effects of several forms of delays on the existence and stability of travelling waves in non-locally coupled networks of Kuramoto-type phase oscillators and theta neurons. By passing to the continuum limit and using the Ott/Antonsen ansatz, we derive evolution equations for a spatially dependent order parameter. For phase oscillator networks, the travelling waves take the form of uniformly twisted waves, and these can often be characterised analytically.
View Article and Find Full Text PDFWe consider a network of coupled excitatory and inhibitory theta neurons which is capable of supporting stable spatially-localized "bump" solutions. We randomly add long-range and simultaneously remove short-range connections within the network to form a small-world network and investigate the effects of this rewiring on the existence and stability of the bump solution. We consider two limits in which continuum equations can be derived; bump solutions are fixed points of these equations.
View Article and Find Full Text PDFThe original neural field model of Wilson and Cowan is often interpreted as the averaged behaviour of a network of switch like neural elements with a distribution of switch thresholds, giving rise to the classic sigmoidal population firing-rate function so prevalent in large scale neuronal modelling. In this paper we explore the effects of such threshold noise without recourse to averaging and show that spatial correlations can have a strong effect on the behaviour of waves and patterns in continuum models. Moreover, for a prescribed spatial covariance function we explore the differences in behaviour that can emerge when the underlying stationary distribution is changed from Gaussian to non-Gaussian.
View Article and Find Full Text PDF