Enzymes entrapped in wet, nanoporous silica gel have great potential as bioreactors for bioremediation because of their improved thermal, chemical, and mechanical stability with respect to enzymes in solution. The B isozyme of catechol 1,2 dioxygenase from Acinetobacter radioresistens and its mutants of Leu69 and Ala72, designed for an increased reactivity toward the environmental pollutant chlorocatechols, were encapsulated using alkoxysilanes and alkyl alkoxysilanes as precursors in varying proportions. Encapsulation of the mutants in a hydrophobic tetramethoxysilane/dimethoxydimethylsilane-based matrix yielded a remarkable 10- to 12-fold enhancement in reactivity toward chlorocatechols.
View Article and Find Full Text PDFIntradiol dioxygenase are iron-containing enzymes involved in the bacterial degradation of natural and xenobiotic aromatic compounds. The wild-type and mutants forms of catechol 1,2-dioxygenase Iso B from Acinetobacter radioresistens LMG S13 have been investigated in order to get an insight on the structure-function relationships within this system. 4K CW-EPR spectroscopy highlighted different oxygen binding properties of some mutants with respect to the wild-type enzyme, suggesting that a fine tuning of the substrate-binding determinants in the active site pocket may indirectly result in variations of the iron reactivity.
View Article and Find Full Text PDFSelenium (Se), Se-cysteines and selenoproteins have received growing interest in the nutritional field as redox-balance modulating agents. The aim of this study was to establish the Se-concentrating and Se-metabolizing capabilities of the probiotic Lactobacillus reuteri Lb26 BM, for nutraceutical applications. A comparative proteomic approach was employed to study the bacteria grown in a control condition (MRS modified medium) and in a stimulated condition (4.
View Article and Find Full Text PDFAmine production by amino acid decarboxylation is a common feature that is used by lactic acid bacteria (LAB) to complement lactic fermentation, since it is coupled with a proton-extruding antiport system which leads to both metabolic energy production and the attenuation of intracellular acidity. Analogous roles are played in LAB by both malolactic fermentation (MLF) and the arginine deiminase (ADI) pathway. The present investigation was aimed at establishing reciprocal interactions between amino acid decarboxylation and the two above mentioned routes.
View Article and Find Full Text PDFIn the present study, the high isoelectric point sub-proteome of Acinetobacter radioresistens S13 grown on aromatic compounds (benzoate or phenol) was analyzed and compared to the protein pattern, in the same pI range, of acetate-grown bacteria (control condition). Analyses concerned both soluble and membrane enriched proteomes and led to the identification of 25 proteins that were differentially expressed among the growth conditions considered: most of them were up-regulated in cells grown on aromatic compounds. Up to 17 identified proteins can be, more or less directly, related to the so called "envelope stress responses": these signal transduction pathways are activated when bacterial cells are exposed to stressing environments (e.
View Article and Find Full Text PDFIntradiol-cleaving catechol 1,2 dioxygenases are Fe(III) dependent enzymes that act on catechol and substituted catechols, including chlorocatechols pollutants, by inserting molecular oxygen in the aromatic ring. Members of this class are the object of intense biochemical investigations aimed at the understanding of their catalytic mechanism, particularly for designing mutants with selected catalytic properties. We report here an in depth investigation of catechol 1,2 dioxygenase IsoB from Acinetobacter radioresistens LMG S13 and its A72G and L69A mutants.
View Article and Find Full Text PDFGABA is a molecule of increasing nutraceutical interest due to its modulatory activity on the central nervous system and smooth muscle relaxation. Potentially probiotic bacteria can produce it by glutamate decarboxylation, but nothing is known about the physiological modifications occurring at the microbial level during GABA production. In the present investigation, a GABA-producing Lactococcus lactis strain grown in a medium supplemented with or without glutamate was studied using a combined transcriptome/proteome analysis.
View Article and Find Full Text PDFProteomics
May 2009
The soluble and membrane proteome of a tyramine producing Enterococcus faecalis, isolated from an Italian goat cheese, was investigated. A detailed analysis revealed that this strain also produces small amounts of beta-phenylethylamine. Kinetics of tyramine and beta-phenylethylamine accumulation, evaluated in tyrosine plus phenylalanine-enriched cultures (stimulated condition), suggest that the same enzyme, the tyrosine decarboxylase (TDC), catalyzes both tyrosine and phenylalanine decarboxylation: tyrosine was recognized as the first substrate and completely converted into tyramine (100% yield) while phenylalanine was decarboxylated to beta-phenylethylamine (10% yield) only when tyrosine was completely depleted.
View Article and Find Full Text PDFCatechol 1,2-dioxygenases and chlorocatechol dioxygenases are Fe(III)-dependent enzymes that do not require a reductant to perform the ortho cleavage of the aromatic ring. The reaction mechanism is common to the two enzymes, and active-site residues must play a key role in the fine-tuning of specificity. Protein engineering was applied for the first time to the catalytic pocket of a catechol 1,2-dioxygenase by site-specific and site-saturation mutagenesis with the purpose of redesigning the pocket shape for improved catalysis on bulky derivatives.
View Article and Find Full Text PDFDespite the large number of papers dealing with bacterial proteomes, very few include information about proteins with alkaline pI's, because of the limits inherent in 2-DE technology. Nonetheless, analyses of in silico proteomes of many prokaryotes show a bimodal distribution of their proteins based on their pI's; the most crowded areas lying between pI 4-7 and 9-11. The aim of the present research was to set up a general, simple, and standardizable 2-DE protocol suitable for studying the alkaline proteome of Lactobacillus hilgardii, a Gram-positive bacillus isolated from wine.
View Article and Find Full Text PDFAcinetobacter radioresistens S13 is able to grow on phenol or benzoate as the sole carbon and energy source: both these compounds are catabolized through the beta-ketoadipate pathway. Genes encoding the catabolic enzymes for degradation of aromatic compounds are localized on A. radioresistens S13 chromosome and organized in, at least, two distinct sets, one for benzoate degradation and another for phenol catabolism.
View Article and Find Full Text PDFThe genus Acinetobacter is composed of ubiquitous, generally nonpathogen environmental bacteria. Interest concerning these microorganisms has increased during the last 30 years, because some strains, belonging to the so-called A. baumannii-A.
View Article and Find Full Text PDFThis work provides functional data showing that the bacterial CYP102A1 recognises compounds metabolised by human CYP3A4, CYP2E1 and CYP1A2 and is able to catalyse different reactions. Wild-type cytochrome CYP102A1 from Bacillus megaterium is a catalytically self-sufficient enzyme, containing an NADPH-dependent reductase and a P450 haem domain fused in a single polypeptidie chain. An NADPH-dependent method (Tsotsou et al.
View Article and Find Full Text PDFThe structure of the core oligosaccharide of the lipopolysaccharide from an organic solvent tolerant Gram-negative bacterium, Acinetobacter radioresistens S13, was investigated by chemical analysis, NMR spectroscopy and MALDI-TOF mass spectrometry. All the experiments were performed on the oligosaccharides obtained either by alkaline degradation or mild acid hydrolysis. The data showed the presence of two novel oligosaccharide molecules containing a trisaccharide of 3-deoxy-D-manno-octulopyranosonic acid in the inner core region and a glucose rich outer core whose structure is the following: [structure: see text] R=H in the main oligosaccharide and beta-Glc in the minor product.
View Article and Find Full Text PDFAll fermented foods are subject to the risk of biogenic amine contamination. Histamine and tyramine are among the most toxic amines for consumers' health, exerting undesirable effects on the central nervous and vascular systems, but putrescine and cadaverine can also compromise the organoleptic properties of contaminated foods. These compounds are produced by fermenting microbial flora that decarboxylate amino acids to amines.
View Article and Find Full Text PDFThe different behaviour of two isozymes (IsoA and IsoB) of catechol 1,2-dioxygenase (C 1,20) from Acinetobacter radioresistens S13 on a hydrophobic interaction, Phenyl-Sepharose chromatographic column, prompted us to investigate the role of superficial hydrophobicity on structural-functional aspects for such class of enzymes. The interaction of 8-anilino-1-naphtalenesulphonate (ANS), a fluorescent probe known to bind to hydrophobic sites in proteins, revealed that the two isoenzymes have a markedly different hydrophobicity degree although a similar number of hydrophobic superficial sites were estimated (2.65 for IsoA and 2.
View Article and Find Full Text PDFThe reversible active site metal ion removal process for two catechol 1,2-dioxygenase isoenzymes (IsoA and IsoB) isolated from Acinetobacter radioresistens S13 has been monitored using circular dichroism and fluorescence spectroscopic techniques. IsoA and IsoB are homodimers, containing one iron(III) ion per subunit. Their amino acid sequence identity is 48.
View Article and Find Full Text PDFStudy of the bacterial membrane proteome, though in its early stages, is a field of growing interest in the search for information about nutrient transport and processing. We tested different strategies and chemical compounds to extract proteins from the membranes (inner and outer) of Acinetobacter radioresistens S13, a Gram-negative bacterium selected for its ability to degrade aromatics. A.
View Article and Find Full Text PDFMilk fat globule membrane (MFGM) contains proteins derived from the apical membrane of secreting epithelial cells of the mammary gland. Between 2-4% of total human milk protein content is associated with the fat globule fraction, as MFGM proteins. While MFGM proteins have very low classical nutritional value, they play important roles in various cell processes and defence mechanisms for the newborn.
View Article and Find Full Text PDFPhenol hydroxylase (PH) from Acinetobacter radioresistens S13 represents an example of multicomponent aromatic ring monooxygenase made up of three moieties: a reductase (PHR), an oxygenase (PHO) and a regulative component (PHI). The function of the oxygenase component (PHO), here characterized for the first time, is to bind molecular oxygen and catalyse the mono-hydroxylation of substrates (phenol, and with less efficiency, chloro- and methyl-phenol and naphthol). PHO was purified from extracts of A.
View Article and Find Full Text PDFAn amine oxidase from the yeast Kluyveromyces marxianus was induced, purified and completely characterized; it was shown to belong to the class of copper-containing amine oxidases (E.C. 1.
View Article and Find Full Text PDFThis paper reports the isolation and characterization of the regulatory moiety of the multicomponent enzyme phenol hydroxylase from Acinetobacter radioresistens S13 grown on phenol as the only carbon and energy source. The whole enzyme comprises an oxygenase moiety (PHO), a reductase moiety (PHR) and a regulatory moiety (PHI). PHR contains one FAD and one iron-sulfur cluster, whose function is electron transfer from NADH to the dinuclear iron centre of the oxygenase.
View Article and Find Full Text PDFHuman butyrophilin (BTN) expression in milk fat globule (MFGM) was evaluated using two dimensional electrophoresis (2-DE) as the separation technique, and peptide mass mapping by matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS) as the identification tool. Since milk composition changes throughout lactation time, 2-DE maps in the pH range 4-7 of colostral MFGM and mature MFGM were compared, showing only slight differences in BTN spot distribution. The BTN gene family codes for seven proteins (BTN, BTN2A1, BTN2A2, BTN2A3, BTN3A1, BTN3A2, BTN3A3), their presence in human tissues has to date been evaluated only at a transcriptional level.
View Article and Find Full Text PDFTwo novel catechol 1,2-dioxygenase (C 1,2-O) genes have been isolated from an Acinetobacter radioresistens strain that grows on phenol or benzoate as sole carbon and energy source. Designated as catA(A) and catA(B), they encode proteins composed of 314 and 306 amino acids, whose deduced sequences indicate that they have approximately 53% identity, whereas their NH2-terminal and COOH-terminal regions have no sequences in common. This may explain their different thermal and pH stability.
View Article and Find Full Text PDF