The tyrosine kinase activity of the BCR/ABL fusion protein is required for the transformation in patients with chronic myeloid leukemia. The tyrosine kinase inhibitor STI571 inhibits the BCR/ABL and ABL kinase activity and consequently inhibits growth of BCR/ABL-positive cells. However, resistance to STI571 has been demonstrated in Ph+ cell lines and in CML patients and can be explained in some cases by point mutations within the ATP-binding pocket or amplification of the bcr/abl gene.
View Article and Find Full Text PDFBlast crisis is the most advanced stage of chronic myelogenous leukemia (CML) and is highly refractory to therapy. CML is caused by expression of the chimeric BCR-ABL tyrosine kinase oncogene, the product of the t(9;22) Philadelphia translocation. Imatinib (Glivec, formerly STI571) is a rationally developed, orally administered inhibitor of the Bcr-Abl tyrosine kinase.
View Article and Find Full Text PDFhnRNP A1 is a nucleocytoplasmic shuttling heterogeneous nuclear ribonucleoprotein that accompanies eukaryotic mRNAs from the active site of transcription to that of translation. Although the importance of hnRNP A1 as a regulator of nuclear pre-mRNA and mRNA processing and export is well established, it is unknown whether this is relevant for the control of proliferation, survival, and differentiation of normal and transformed cells. We show here that hnRNP A1 levels are increased in myeloid progenitor cells expressing the p210(BCR/ABL) oncoprotein, in mononuclear cells from chronic myelogenous leukemia (CML) blast crisis patients, and during disease progression.
View Article and Find Full Text PDFOncogenic anaplastic lymphoma kinase (ALK) fusion proteins (NPM/ALK and associated variants) are expressed in about 60% of anaplastic large cell lymphomas (ALCLs) but are absent in normal tissues. In this study, we investigated whether ALK, which is expressed at high levels in lymphoma cells, could be a target for antigen-specific cell-mediated immunotherapy. A panel of ALK-derived peptides was tested for their binding affinity to HLA-A*0201 molecules.
View Article and Find Full Text PDFChronic myelogenous leukemia (CML) is caused by expression of the BCR-ABL tyrosine kinase oncogene, the product of the t(9;22) Philadelphia translocation. Patients with CML in accelerated phase have rapidly progressive disease and are characteristically unresponsive to existing therapies. Imatinib (formerly STI571) is a rationally developed, orally administered inhibitor of the Bcr-Abl kinase.
View Article and Find Full Text PDFBackground: Chronic myelogenous leukemia (CML) is caused by the BCR-ABL tyrosine kinase, the product of the Philadelphia chromosome. Imatinib mesylate, formerly STI571, is a selective inhibitor of this kinase.
Methods: A total of 532 patients with late--chronic-phase CML in whom previous therapy with interferon alfa had failed were treated with 400 mg of oral imatinib daily.
The arrest of differentiation is a feature of both chronic myelogenous leukemia cells in myeloid blast crisis and myeloid precursors that ectopically express the p210BCR-ABL oncoprotein; however, its underlying mechanisms remain poorly understood. Here we show that expression of BCR-ABL in myeloid precursor cells leads to transcriptional suppression of the granulocyte colony-stimulating factor receptor G-CSF-R (encoded by CSF3R), possibly through down-modulation of C/EBPalpha-the principal regulator of granulocytic differentiation. Expression of C/EBPalpha protein is barely detectable in primary marrow cells taken from individuals affected with chronic myeloid leukemia in blast crisis.
View Article and Find Full Text PDFBetulinic acid is a triterpene with selective cytotoxicity against melanoma, neuroectodermal and malignant brain tumor cell lines. In this study the betulinic acid activity was evaluated, in comparison with doxorubicin, on different human neoplastic and non-neoplastic cell lines and on proliferating normal lymphocytes. Growth inhibition was evident in all the neoplastic cell lines independently on p53 status and histotype.
View Article and Find Full Text PDF