The development of monitoring programs based on bioindicators is crucial for assessing the impact of microplastic ingestion on marine organisms. This study presents results from an Italian pilot action aimed at investigating the suitability of a monitoring strategy based on a multispecies approach. The benthic-feeder Mullus barbatus, the demersal species Merluccius merluccius, and the pelagic-feeder species of the genus Scomber were used to assess the environmental contamination by microplastics in three different marine areas, namely Ancona (Adriatic Sea), Anzio (Tyrrhenian Sea), and Oristano (Western Sardinia).
View Article and Find Full Text PDFThe occurrence of microplastics in the marine ecosystem and aquatic organisms, their trophic transfer along the food web, and the identification of seafood species as suitable indicators have become a research priority. Despite the high quantity of research in this field, a comparison between the available data and an appropriate risk assessment remains difficult. In this perspective, as an innovative approach, the association of the feeding strategies of commercial seafood and the microplastic level was considered.
View Article and Find Full Text PDFMicroplastics (MPs) are ubiquitous contaminants of the marine environment, and the deep seafloor is their ultimate sink compartment. Manipulative and field experiments provided evidence of the ingestion of MPs by deep-sea fauna, but knowledge of MPs' fate once ingested still remains scant. We provide evidence of MP partial retention and fragmentation mediated by digestion activity of a Norwegian langoustine, a good bioindicator for MP contamination of the deep sea.
View Article and Find Full Text PDFThis study provided a comprehensive characterization on ingestion of different typologies of microplastics in several fish and invertebrate species from the Adriatic Sea, considered as a preferential area of plastic accumulation in the Mediterranean. Almost 500 organisms were sampled in the three sectors of Northern, Central and Southern Adriatic, testing the hypothesis that area of collection, habitat and feeding strategy might influence the occurrence of plastic particles in biota. In this study, the overall characterization considered separately plastic microparticles (MPs) from textile microfibers (MFs) which also included natural and semi-synthetic ones.
View Article and Find Full Text PDFIngestion of microplastics (MPs) has been documented in several marine organisms, but their occurrence in deep-sea species remains almost unknown. In this study, MPs were investigated in two economically and ecologically key crustaceans of the Mediterranean Sea, the Norwegian lobster Nephrops norvegicus and the shrimp Aristeus antennatus. Both the species were collected from 14 sites around Sardinia Island, at depths comprised between 270 and 660 m.
View Article and Find Full Text PDFThe emerged threat of microplastics (MPs) in aquatic ecosystems is posing a new challenges in environmental management, in particular the civil Wastewater Treatment Plants (WWTPs) which can act both as collectors of MPs from anthropic use and as a source to natural environments. In this study, MP fate was investigated in one of the biggest WWTPs of Northern Italy, built at the beginning of the 2000s and which serves a population equivalent of about 1,200,000, by evaluating their presence at the inlet (IN), the removal efficiency after the settler (SET) and at the outlet (OUT), and their transfer to sludge. Samples were collected in three days of a week and plastic debris was characterized in terms of shape, size and polymer composition using the Fourier Transform Infrared Microscope System (μFT-IR).
View Article and Find Full Text PDFThe exponential production and use of plastics has generated increasing environmental release over the past decades, and microplastics (MPs) have been reported across all the oceans. Field studies have documented the occurrence of MPs in several species, but important knowledge gaps still remain. In the present study, we characterized the distribution of MPs in ten sediment-dwelling and epibenthic species representative of different habitat, feeding modes and trophic levels within the inner Oslofjord (Oslo, Norway), an area subjected to moderate anthropogenic pressures.
View Article and Find Full Text PDFMicroplastics (MPs) represent a matter of growing concern for the marine environment. Their ingestion has been documented in several species worldwide, but the impact of specific anthropogenic activities remains largely unexplored. In this study, MPs were characterized in different benthic fish sampled after 2.
View Article and Find Full Text PDFThe Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant.
View Article and Find Full Text PDFPlastic production has increased dramatically worldwide over the last 60 years and it is nowadays recognized as a serious threat to the marine environment. Plastic pollution is ubiquitous, but quantitative estimates on the global abundance and weight of floating plastics are still limited, particularly for the Southern Hemisphere and the more remote regions. Some large-scale convergence zones of plastic debris have been identified, but there is the urgency to standardize common methodologies to measure and quantify plastics in seawater and sediments.
View Article and Find Full Text PDFThe presence of microplastics in the marine environment has raised scientific interest during the last decade. Several organisms can ingest microplastics with potentially adverse effects on the digestive tract, respiratory system and locomotory appendages. However, a clear evidence of tissue accumulation and transfer of such microparticles in wild organisms is still lacking, partially hampered by technical difficulties in isolation and characterization protocols from biological samples.
View Article and Find Full Text PDFMicroplastics represent a growing environmental concern for the oceans due to their potential of adsorbing chemical pollutants, thus representing a still unexplored source of exposure for aquatic organisms. In this study polyethylene (PE) and polystyrene (PS) microplastics were shown to adsorb pyrene with a time and dose-dependent relationship. Results also indicated a marked capability of contaminated microplastics to transfer this model PAH to exposed mussels Mytilus galloprovincialis; tissue localization of microplastics occurred in haemolymph, gills and especially digestive tissues where a marked accumulation of pyrene was also observed.
View Article and Find Full Text PDF