Tin(II) compounds are versatile materials with applications across fields such as catalysis, diagnostic imaging, and therapeutic drugs. However, oxidative stabilization of Sn(II) has remained an unresolved challenge as its reactivity with water and dioxygen results in loss of functionality, limiting technological advancement. Approaches to slow Sn(II) oxidation with chelating ligands or sacrificial electron donors have yielded only moderate improvements.
View Article and Find Full Text PDFPurpose: To investigate the stain preventing ability of a new chlorhexidine mouthwash while maintaining efficacy using a randomized clinical trial design.
Methods: 98 subjects were enrolled and completed a 4-week clinical study that evaluated the effectiveness of the new mouthwash on plaque, gingivitis, and staining as compared to a commercially available chlorhexidine mouthwash. A subset of 62 subjects was evaluated for the effectiveness of the mouthwashes against plaque bacteria.
Objectives: Reflecting the need for an effective support for the daily oral hygiene routine of patients experiencing (symptoms of) gum inflammation, a new mouthwash has been developed containing an amine + zinc lactate + fluoride system. The in vitro efficacy of this product was assessed using traditional laboratory methods, as well as novel experimentation.
Materials And Methods: This mouthwash has been evaluated in a series of laboratory tests including two short interval kill tests (SIKTs), a 12-h (longer term) biofilm regrowth assay, a plaque glycolysis assay, and an aerobic, repeated exposure biofilm model, as well as tests for soft tissue uptake and LPS neutralization.
Introduction: The primary health care system provides an ideal setting for the integration of oral health into general health care as well as equitable access to oral health care. However, the limited oral health knowledge of primary health care workers necessitates appropriate training before they can participate in health promotion efforts. This pilot training was designed to examine the impact of the Oral Health Education module for Nurses and Community Health Care Workers on their oral health awareness and referral practices.
View Article and Find Full Text PDFIntroduction: The human host defense peptide LL-37 is a component of the innate immune defense mechanisms of the oral cavity against colonization by microbes associated with periodontal disease. We have previously shown that the active form of vitamin D, 1,25(OH)D, can induce the expression of LL-37 in gingival epithelial cells (GEC), and prevent the invasion and growth of periopathogenic bacteria in these cells. Further, experimental vitamin D deficiency resulted in increased gingival inflammation and alveolar bone loss.
View Article and Find Full Text PDFObjectives: To support the daily oral hygiene of patients experiencing gum inflammation, a new mouthwash was developed containing an amine + zinc lactate + fluoride system. In vitro and clinical efficacy was assessed using traditional methods as well as using novel site-specific and subject-specific analyses of the clinical data.
Materials And Methods: This mouthwash was evaluated in a 12-h biofilm regrowth assay against a negative control mouthwash and in a 6-month plaque and gingivitis clinical study as compared to a negative control mouthwash.
The oral cavity is thought to be one of the portals for SARS-CoV-2 entry, although there is limited evidence of active oral infection by SARS-CoV-2 viruses. We assessed the capacity of SARS-CoV-2 to infect and replicate in oral epithelial cells. Oral gingival epithelial cells (hTERT TIGKs), salivary gland epithelial cells (A-253), and oral buccal epithelial cells (TR146), which occupy different regions of the oral cavity, were challenged with replication-competent SARS-CoV-2 viruses and with pseudo-typed viruses expressing SARS-CoV-2 spike proteins.
View Article and Find Full Text PDFAims: We present a dynamic typodont biofilm model (DTBM) incorporating (1) human dentition anatomy, (2) fluid flow over intermittently fluid bathed tooth surfaces and (3) an oxic headspace to allow aerobic and anaerobic niches to develop naturally, as a screening tool to assess the effect of stannous fluoride (SnF ) toothpaste against a simulated human plaque biofilm (SPB).
Methods And Results: First, hydroxyapatite (HA) coupons were inoculated with human saliva/plaque and cultured at 37°C under air. Selected species representative of common commensal and anaerobic pathogens were quantified for relative abundance changes over 4 days by PCR densitometry to confirm the culture conditions allowed the proliferation of these species.
Front Cell Infect Microbiol
November 2021
Oral diseases are one of the most common pathologies affecting human health. These diseases are typically associated with dental plaque-biofilms, through either build-up of the biofilm or dysbiosis of the microbial community. Arginine can disrupt dental plaque-biofilms, and maintain plaque homeostasis, making it an ideal therapeutic to combat the development of oral disease.
View Article and Find Full Text PDFPrevious research identified potential prebiotic substrates for oral health like the structural analogues N-acetyl-D-mannosamine (NADM) and N-acetyl-D-glucosamine (NADG). The main hypothesis of the current study was twofold. Firstly, it was hypothesized that the modulatory effects of NADM are not limited to changes in multi-species oral biofilm composition, but also include effects on metabolism, virulence, and inflammatory potential.
View Article and Find Full Text PDFThe saliva of patients with COVID-19 has a high SARS-CoV-2 viral load. The risk of spreading the virus is high, and procedures for viral load reduction in the oral cavity are important. Little research to date has been performed on the effect of mouthwashes on the salivary SARS-CoV-2 viral load.
View Article and Find Full Text PDF: Modulation of the commensal oral microbiota constitutes a promising preventive/therapeutic approach in oral healthcare. The use of prebiotics for maintaining/restoring the health-associated homeostasis of the oral microbiota has become an important research topic. : This study hypothesised that in vitro 14-species oral biofilms can be modulated by (in)direct stimulation of beneficial/commensal bacteria with new potential prebiotic substrates tested at 1 M and 1%, resulting in more host-compatible biofilms with fewer pathogens, decreased virulence and less inflammatory potential.
View Article and Find Full Text PDFObjectives: To investigate bioavailability enhancement of zinc on model oral surfaces and in oral biofilms in vitro through strategic formulation with two sources of zinc and L-arginine.
Methods: To modulate the bioavailability of active zinc ions in a zinc citrate dentifrice, an additive research strategy was pursued. A series of zinc citrate dentifrice formulations were prepared with increasing replacement of zinc citrate with zinc oxide (a water insoluble source of zinc ions) to generate a Dual Zinc active system.
Background: Only recently the concept of prebiotics has been introduced in oral health. Few potential oral prebiotics have already been identified in dual species competition assays, showing a stimulatory effect on beneficial bacteria and by this suppressing the outgrowth of pathogenic species. This study aimed to validate the effect of previously identified potential prebiotic substrates on multispecies cultures by shifting the biofilm composition towards a more beneficial species dominated microbiota.
View Article and Find Full Text PDFThe flaviviruses dengue, West Nile, and Japanese encephalitis represent three major mosquito-borne viruses worldwide. These pathogens impact the lives of millions of individuals and potentially could affect non-endemic areas already colonized by mosquito vectors. Unintentional transport of infected vectors (Aedes and Culex spp.
View Article and Find Full Text PDFSmoking is responsible for the majority of periodontitis cases in the US and smokers are more susceptible than non-smokers to infection by the periodontal pathogen Porphyromonas gingivalis. P. gingivalis colonization of the oral cavity is dependent upon its interaction with other plaque bacteria, including Streptococcus gordonii.
View Article and Find Full Text PDFThe interaction of the minor fimbrial antigen (Mfa) with streptococcal antigen I/II (e.g., SspB) facilitates colonization of the dental biofilm by Porphyromonas gingivalis.
View Article and Find Full Text PDFThe interaction of the periodontal pathogen, Porphyromonas gingivalis, with oral streptococci such as Streptococcus gordonii precedes colonization of the subgingival pocket and represents a target for limiting P. gingivalis colonization of the oral cavity. Previous studies showed that a synthetic peptide (designated BAR) derived from the antigen I/II protein of S.
View Article and Find Full Text PDFBackground: Tobacco smokers are more susceptible to periodontitis than non-smokers but exhibit reduced signs of clinical inflammation. The underlying mechanisms are unknown. We have previously shown that cigarette smoke extract (CSE) represents an environmental stress to which P.
View Article and Find Full Text PDFBiofilm formation by the periodontal pathogen Aggregatibacter actinomycetemcomitans is dependent upon autoinducer-2 (AI-2)-mediated quorum sensing. However, the components that link the detection of the AI-2 signal to downstream gene expression have not been determined. One potential regulator is the QseBC two-component system, which is part of the AI-2-dependent response pathway that controls biofilm formation in Escherichia coli.
View Article and Find Full Text PDFPorphyromonas gingivalis initially colonizes the oral cavity by interacting with organisms in supragingival plaque, such as the oralis group of oral streptococci. This interaction involves the association of the streptococcal antigen I/II with the minor fimbrial antigen (Mfa1) of P. gingivalis.
View Article and Find Full Text PDFPorphyromonas gingivalis is a periodontal pathogen whose primary niche is the anaerobic environment of subgingival dental plaque, but initial colonization of the oral cavity is likely to occur on supragingival surfaces that already support robust biofilm communities. Our studies have shown that P. gingivalis adheres to Streptococcus gordonii through interaction of the minor fimbrial antigen Mfa1 with a specific region of the streptococcal SspB polypeptide (residues 1167 to 1193) designated BAR.
View Article and Find Full Text PDF