Compressive sensing (CS) is a new technology in digital signal processing capable of high-resolution capture of physical signals from few measurements, which promises impressive improvements in the field of wireless sensor networks (WSNs). In this work, we extensively investigate the effectiveness of compressive sensing (CS) when real COTSresource-constrained sensor nodes are used for compression, evaluating how the different parameters can affect the energy consumption and the lifetime of the device. Using data from a real dataset, we compare an implementation of CS using dense encoding matrices, where samples are gathered at a Nyquist rate, with the reconstruction of signals sampled at a sub-Nyquist rate.
View Article and Find Full Text PDFA key design challenge for successful wireless sensor network (WSN) deployment is a good balance between the collected data resolution and the overall energy consumption. In this paper, we present a WSN solution developed to efficiently satisfy the requirements for long-term monitoring of a historical building. The hardware of the sensor nodes and the network deployment are described and used to collect the data.
View Article and Find Full Text PDF