Publications by authors named "Carlo Biancardi"

Article Synopsis
  • Inching-locomotion caterpillars (ILAR) serve as inspiration for creating 'inch-worm' robots that utilize biomimicry and can adapt to various environments, including natural and extraterrestrial settings.
  • A new mathematical method called Multi-Body Dynamics for Inching-Locomotion Caterpillar Robots (MBD-ILAR) is introduced to simulate the movement of these robots and includes calculations for factors like kinematics and dynamics, focusing on specific robot design aspects.
  • A case study was conducted to apply this method, which involved developing a graphical user interface to optimize robot actuator choices and validate the simulation results by analyzing how different parameters influence attachment forces and mechanical performance.
View Article and Find Full Text PDF

Background: Muscular synergies could represent the patterns of muscular activation used by the central nervous system (CNS) to simplify the production of movement. Studies in walking-running transitions described up to nine synergy modules, and an earlier activation of flexor and extension ankle muscular groups compared to running or walking. Our project aims to study the behaviour of muscle synergies in different stance and swing variations of walking-running (WRT) and running-walking (RWT) transitions.

View Article and Find Full Text PDF

Purpose: Variable-speed control in the field is challenging for motion science. Tests were performed to evaluate speed, Froude number, and oxygen consumption if these varied when using the same frequency of steps. The objective of this study was to evaluate the use of auditory feedback to control variable speed on the treadmill and track during acceleration cycles around the transition speed.

View Article and Find Full Text PDF

Background: Attention-Deficit/Hyperactivity Disorder (ADHD) is a highly heterogeneous diagnostic category, encompassing several endophenotypes and comorbidities, including sleep problems. However, no predictor of clinical long-term trajectories or comorbidity has yet been established. Sleep EEG has been proposed as a potential tool for evaluating the synaptic strength during development, as well as the cortical thickness, which is presumed to be altered in ADHD.

View Article and Find Full Text PDF
Article Synopsis
  • Habitat anthropization negatively impacts global biodiversity, but some species show adaptive life-history responses, like increased reproduction, to cope with these changes.
  • The study focused on the yellow-bellied toad and utilized a large dataset of over 21,000 individuals from various European populations to examine the effects of anthropogenic environments on their survival and reproduction.
  • Results indicated that while adult toads had lower survival and shorter lifespans in human-modified habitats, their increased reproductive output compensated for these losses, helping to maintain stable population growth rates despite habitat alterations.
View Article and Find Full Text PDF

Stroke is a neurological condition that impacts activity performance and quality of life for survivors. While neurological impairments after the event explain the performance of patients in specific activities, the origin of such impairments has traditionally been explained as a consequence of structural and functional damage to the nervous system. However, there are important mechanisms related to energy efficiency (trade-off between biological functions and energy consumption) at different levels that can be related to these impairments and restrictions: first, at the neuronal level, where the availability of energy resources is the initial cause of the event, as well as determines the possibilities of spontaneous recovery.

View Article and Find Full Text PDF

Background: Synergy modules have been used to describe activation of lower limb muscles during locomotion and hence to understand how the system controls movement. Walking and running have been shown shared synergy patterns suggesting common motor control of both symmetrical gaits. Unilateral skipping, an equivalent gait to the quadrupedal gallop in humans, has been defined as the third locomotion paradigm but the use by humans is limited due to its high metabolic cost.

View Article and Find Full Text PDF

Attention deficit hyperactivity disorder (ADHD) is commonly associated with sleep problems, possibly due to shared pathophysiology. Microstructural sleep electroencephalographic (EEG) alterations may likely represent markers of disordered cortical maturation in ADHD, although literature data are still conflicting, deserving further assessment. After having systematically reviewed the literature, we included 11 studies from 598 abstracts, and assessed 23 parameters of cyclic alternating pattern (CAP), four parameters of sleep EEG power and one parameter of sleep graphoelements through 29 meta-analyses and, when possible, univariate meta-regressions.

View Article and Find Full Text PDF

Theraphosid tarantulas are large spiders that bear dense hairy adhesive pads on the distal parts of their legs: scopula and claw tufts. These structures allow them to climb on vertical smooth surfaces and contribute to prey capture. While adult females and juveniles remain most of the time in their burrows, adult males actively walk searching for females during the reproductive period.

View Article and Find Full Text PDF

Background: The mechanics and energetics of spider locomotion have not been deeply investigated, despite their importance in the life of a spider. For example, the reproductive success of males of several species is dependent upon their ability to move from one area to another. The aim of this work was to describe gait patterns and analyze the gait parameters of (Araneae, Theraphosidae) in order to investigate the mechanics of their locomotion and the mechanisms by which they conserve energy while traversing different inclinations and surfaces.

View Article and Find Full Text PDF

Background: Chronic heart failure patients present higher cost of transport and some changes in pattern of walking, but the same aspects have not yet been investigated in heart transplant patients.

Methods: The aim of this study was to investigate both metabolic and mechanicals parameters, at five different walking speeds on treadmill, in chronic heart failure and heart transplant patients. Twelve chronic heart failure patients, twelve healthy controls and five heart transplant patients participated in the study.

View Article and Find Full Text PDF

Background Patients with chronic heart failure frequently report intolerance to exercise and present with changes in walk pattern, but information about heart transplant patients is lacking. Alterations of the gait pattern are related to interaction changes between the metabolism, neurological system and the mechanical demands of the locomotor task. The aim of this study was to investigate the electromyographic cost, coactivation and cost of transport of walking of chronic heart failure and heart transplant patients.

View Article and Find Full Text PDF

Hypogravity challenges bipedal locomotion in its common forms. However, as previously theoretically and empirically suggested, humans can rely on "skipping," a less common gait available as a functional analog (perhaps a vestigium) of quadrupedal gallop, to confidently move when gravity is much lower than on Earth. We set up a 17-m-tall cavaedium (skylight shaft) with a bungee rubber body-suspension system and a treadmill to investigate the metabolic cost and the biomechanics of low-gravity (Mars, Moon) locomotion.

View Article and Find Full Text PDF

Transverse and rotary gallop differ in the placement of the leading hindfeet and forefeet: ipsilateral in the former gait, contralateral in the latter. We analysed 351 filmed sequences to assess the gallop type of 89 investigated mammalian species belonging to Carnivora, Artiodactyla and Perissodactyla orders. Twenty-three biometrical, ecological and physiological parameters were collected for each species both from literature data and from animal specimens.

View Article and Find Full Text PDF

Despite the abundance of octapodal species and their evolutionary importance in originating terrestrial locomotion, the locomotion mechanics of spiders has received little attention so far. In this investigation we use inverse dynamics to study the locomotor performance of Grammostola mollicoma (18 g). Through 3-D kinematic measurements, the trajectory of the eight limbs and cephalothorax or abdomen allowed us to estimate the motion of the body centre of mass (COM) at different speeds.

View Article and Find Full Text PDF