This research aims to develop a predictive model to discriminate milk produced from a cattle diet either based on grass or not using milk mid-infrared spectrometry and the month of testing (an indirect indicator of the feeding ration). The dataset contained 3,377,715 spectra collected between 2011 and 2021 from 2449 farms and 3 grazing traits defined following the month of testing. Records from 30% of the randomly selected farms were kept in the calibration set, and the remaining records were used to validate the models.
View Article and Find Full Text PDFMeasuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents.
View Article and Find Full Text PDFAssignment of individual cattle to a specific breed can often not rely on pedigree information. This is especially the case for local breeds for which the development of genomic assignment tools is required to allow individuals of unknown origin to be included to their herd books. A breed assignment model can be based on two specific stages: (a) the selection of breed-informative markers and (b) the assignment of individuals to a breed with a classification method.
View Article and Find Full Text PDFKnowing the body weight (BW) of a cow at a specific moment or measuring its changes through time is of interest for management purposes. The current work aimed to validate the feasibility of predicting BW using the day in milk, parity, milk yield, and milk mid-infrared (MIR) spectrum from a multiple-country dataset and reduce the number of predictors to limit the risk of over-fitting and potentially improve its accuracy. The BW modeling procedure involved feature selections and herd-independent validation in identifying the most interesting subsets of predictors and then external validation of the models.
View Article and Find Full Text PDFGroup A Streptococcus (GAS) is a human pathogen that has the potential to cause invasive disease by binding and activating human plasmin(ogen). Streptococcal surface enolase (SEN) is an octameric α-enolase that is localized at the GAS cell surface. In addition to its glycolytic role inside the cell, SEN functions as a receptor for plasmin(ogen) on the bacterial surface, but the understanding of the molecular basis of plasmin(ogen) binding is limited.
View Article and Find Full Text PDFThe modulation of pentameric ligand-gated ion channels (pLGICs) by divalent cations is believed to play an important role in their regulation in a physiological context. Ions such as calcium or zinc influence the activity of pLGIC neurotransmitter receptors by binding to their extracellular domain and either potentiate or inhibit channel activation. Here we have investigated by electrophysiology and X-ray crystallography the effect of divalent ions on ELIC, a close prokaryotic pLGIC homologue of known structure.
View Article and Find Full Text PDFThe flow of ions through cation-selective members of the pentameric ligand-gated ion channel family is inhibited by a structurally diverse class of molecules that bind to the transmembrane pore in the open state of the protein. To obtain insight into the mechanism of channel block, we have investigated the binding of positively charged inhibitors to the open channel of the bacterial homolog GLIC by using X-ray crystallography and electrophysiology. Our studies reveal the location of two regions for interactions, with larger blockers binding in the center of the membrane and divalent transition metal ions binding to the narrow intracellular pore entry.
View Article and Find Full Text PDF