The tunable mechanical properties of polyurethanes (PUs), due to their extensive structural diversity and biocompatibility, have made them promising materials for biomedical applications. Scientists can address PUs' issues with platelet absorption and thrombus formation owing to their modifiable surface. In recent years, PUs have been extensively utilized in biomedical applications because of their chemical stability, biocompatibility, and minimal cytotoxicity.
View Article and Find Full Text PDFMale survivors of childhood cancer have been known to be afflicted with azoospermia. To combat this, the isolation and purification of spermatogonial stem cells (SSCs) are crucial. Implementing scaffolds that emulate the extracellular matrix environment is vital for promoting the regeneration and proliferation of SSCs.
View Article and Find Full Text PDFHeparin, usually isolated from porcine intestinal mucosa, is an active pharmaceutical ingredient of great material value. Traditionally, diverse types of commercial resins were employed as an adsorbent for heparin retrieval from biological samples. However, more recent years have encouraged the advent of new cost-effective adsorbents to achieve enhanced heparin retrieval.
View Article and Find Full Text PDFHeparin is one of the most valuable active pharmaceutical ingredients, and it is generally isolated from porcine intestinal mucosa. Traditionally, different types of commercial resins are employed as an adsorbent for heparin uptake; however, using new, less expensive adsorbents has attracted more interest in the past few years to enhance the heparin recovery. Zeolite imidazolate framework-8 (ZIF-8), as a metal-organic framework (MOF) with a high surface area, porosity, and good stability at high temperatures, was selected to examine the heparin recovery.
View Article and Find Full Text PDF