Publications by authors named "Carlito S Ponseca"

In this study we present a novel energy transfer material inspired by natural light-harvesting antenna arrays, zinc(II) phthalocyanine-pyrene (ZnPcPy). The ZnPcPy system facilitates energy transfer from 16 covalently linked pyrene (Py) donor chromophores to the emissive central zinc(II) phthalocyanine (ZnPc) core. Nearly 98% energy transfer efficiency is determined from the changes in emission decay rates between free MePy to covalently linked Py, supported by comparisons of photoluminescence quantum yields using different excitation wavelengths.

View Article and Find Full Text PDF

Charge separation dynamics after the absorption of a photon is a fundamental process relevant both for photosynthetic reaction centers and artificial solar conversion devices. It has been proposed that quantum coherence plays a role in the formation of charge carriers in organic photovoltaics, but experimental proofs have been lacking. Here we report experimental evidence of coherence in the charge separation process in organic donor/acceptor heterojunctions, in the form of low frequency oscillatory signature in the kinetics of the transient absorption and nonlinear two-dimensional photocurrent spectroscopy.

View Article and Find Full Text PDF

Hybrid organic-inorganic halide perovskites have shown remarkable optoelectronic properties, exhibiting an impressive tolerance to defects believed to originate from correlated motion of charge carriers and the polar lattice forming large polarons. Few experimental techniques are capable of directly probing these correlations, requiring simultaneous sub-millielectron volt energy and femtosecond temporal resolution after absorption of a photon. Here, we use time-resolved multi-THz spectroscopy, sensitive to the internal excitations of the polaron, to temporally and energetically resolve the coherent coupling of charges to longitudinal optical phonons in single-crystal CHNHPbI (MAPI).

View Article and Find Full Text PDF

Although significant improvements have been achieved for organic photovoltaic cells (OPVs), the top-performing devices still show power conversion efficiencies far behind those of commercialized solar cells. One of the main reasons is the large driving force required for separating electron-hole pairs. Here, we demonstrate an efficiency of 14.

View Article and Find Full Text PDF

Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices.

View Article and Find Full Text PDF

There is a mounting effort to use nickel oxide (NiO) as p-type selective electrode for organometal halide perovskite-based solar cells. Recently, an overall power conversion efficiency using this hole acceptor has reached 18%. However, ultrafast spectroscopic investigations on the mechanism of charge injection as well as recombination dynamics have yet to be studied and understood.

View Article and Find Full Text PDF

Organo-metal halide perovskites (OMHPs) have attracted enormous interest in recent years as materials for application in optoelectronics and solar energy conversion. These hybrid semiconductors seem to have the potential to challenge traditional silicon technology. In this review we will give an account of the recent development in the understanding of the fundamental light-induced processes in OMHPs from charge-photo generation, migration of charge carries through the materials and finally their recombination.

View Article and Find Full Text PDF

We report on studies of the formamidinium lead triiodide (FAPbI3) perovskite film using time-resolved terahertz (THz) spectroscopy (TRTS) and flash photolysis to explore charge carriers generation, migration, and recombination. The TRTS results show that upon femtosecond excitation above the absorption edge, the initial high photoconductivity (∼75 cm(2) V(-1) s(-1)) remains constant at least up to 8 ns, which corresponds to a diffusion length of 25 μm. Pumping below the absorption edge results in a mobility of 40 cm(2) V(-1) s(-1) suggesting lower mobility of charge carriers located at the bottom of the conduction band or shallow sub-bandgap states.

View Article and Find Full Text PDF

Despite the unprecedented interest in organic-inorganic metal halide perovskite solar cells, quantitative information on the charge transfer dynamics into selective electrodes is still lacking. In this paper, we report the time scales and mechanisms of electron and hole injection and recombination dynamics at organic PCBM and Spiro-OMeTAD electrode interfaces. On the one hand, hole transfer is complete on the subpicosecond time scale in MAPbI3/Spiro-OMeTAD, and its recombination rate is similar to that in neat MAPbI3.

View Article and Find Full Text PDF

Solar energy conversion in photovoltaics or photocatalysis involves light harvesting, or sensitization, of a semiconductor or catalyst as a first step. Rare elements are frequently used for this purpose, but they are obviously not ideal for large-scale implementation. Great efforts have been made to replace the widely used ruthenium with more abundant analogues like iron, but without much success due to the very short-lived excited states of the resulting iron complexes.

View Article and Find Full Text PDF

Solar cells based on organometal halide perovskites have seen rapidly increasing efficiencies, now exceeding 15%. Despite this progress, there is still limited knowledge on the fundamental photophysics. Here we use microwave photoconductance and photoluminescence measurements to investigate the temperature dependence of the carrier generation, mobility, and recombination in (CH3NH3)PbI3.

View Article and Find Full Text PDF

Fluorescence super-resolution microscopy showed correlated fluctuations of photoluminescence intensity and spatial localization of individual perovskite (CH3NH3PbI3) nanocrystals of size ∼200 × 30 × 30 nm(3). The photoluminescence blinking amplitude caused by a single quencher was a hundred thousand times larger than that of a typical dye molecule at the same excitation power density. The quencher is proposed to be a chemical or structural defect that traps free charges leading to nonradiative recombination.

View Article and Find Full Text PDF

In this paper we studied carrier drift dynamics in APFO3:PC61BM solar cells of varied stoichiometry (2:1, 1:1, and 1:4 APFO3:PC61BM) over a wide time range, from subpicoseconds to microseconds with a combination of ultrafast optical electric field probing and conventional transient integrated photocurrent techniques. Carrier drift and extraction dynamics are strongly stoichiometry dependent: the speed of electron or hole drift increases with higher concentration of PC61BM or polymer, respectively. The electron extraction from a sample with 80% PC61BM takes place during hundreds of picoseconds, but slows down to sub-microseconds in a sample with 33% PC61BM.

View Article and Find Full Text PDF

Organometal halide perovskite-based solar cells have recently been reported to be highly efficient, giving an overall power conversion efficiency of up to 15%. However, much of the fundamental photophysical properties underlying this performance has remained unknown. Here, we apply photoluminescence, transient absorption, time-resolved terahertz and microwave conductivity measurements to determine the time scales of generation and recombination of charge carriers as well as their transport properties in solution-processed CH3NH3PbI3 perovskite materials.

View Article and Find Full Text PDF

Time-resolved terahertz spectroscopy was employed for the investigation of charge-transport dynamics in benzothiadiazolo-dithiophene polyfluorene ([2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]) (APFO-3) polymers with various chain lengths and in its monomer form, all blended with an electron acceptor ([6,6]-phenyl-C61-butyric acid methyl ester, PCBM). Upon photoexcitation, charged polaron pairs are created, negative charges are transferred to fullerenes, while positive polarons remain on polymers/monomers. Vastly different hole mobility in polymer and monomer blends allows us to distinguish the hole and electron contributions to the carrier mobility.

View Article and Find Full Text PDF

The few-picosecond (ps) decay of terahertz (THz) photoconductivity typically observed for conjugated polymer:fullerene blends (at excitation fluencies ~10(15) photons/cm(2) per pulse) is shown to be a result of charge pair annihilation for two polymer:PCBM blends. At a factor of 100 lower excitation density, the THz decay is in the hundreds of ps time scale, implying that very high carrier mobility (~0.1 cm(2) V(-1) s(-1)) prevails for long time after charge formation, of importance for free charge formation in organic solar cells.

View Article and Find Full Text PDF

Photoinduced electron injection dynamics from CdSe quantum dots to ZnO nanowires is studied by transient absorption and time-resolved terahertz spectroscopy measurements. Ultrafast electron transfer from the CdSe quantum dots to ZnO is proven to be efficient already on a picoseconds time scale (τ = 3-12 ps). The measured kinetics was found to have a two-component character, whose origin is discussed in detail.

View Article and Find Full Text PDF

A hollow-core microstructured polymer optical fiber was analyzed in the terahertz (THz) region. Spectral analysis of time domain data shows propagation of THz waves in both the hollow-core and the microstructured cladding with a time delay of approximately 20 ps. The frequency range and shift of the transmission bands between different sized waveguides suggested photonic bandgap or resonant guidance.

View Article and Find Full Text PDF