FSH is an essential regulator of mammalian reproduction. Its synthesis by pituitary gonadotrope cells is regulated by multiple endocrine and paracrine factors, including TGFβ superfamily ligands, such as the activins and inhibins. Activins stimulate FSH synthesis via transcriptional regulation of its β-subunit gene (Fshb).
View Article and Find Full Text PDFTGFβ superfamily ligands greatly outnumber their receptors. Thus, receptors are shared between ligands and individual ligands can bind multiple receptors. Bone morphogenetic proteins (BMPs) bind and signal via both BMP type II (BMPR2) and activin type II (ACVR2) receptors.
View Article and Find Full Text PDFThe pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), play essential roles in the regulation of vertebrate reproduction. Activins and inhibins have opposing actions on FSH (but not LH) synthesis, either inducing or inhibiting transcription of the FSHβ subunit gene (Fshb). The translational inhibitor cycloheximide (CHX) produces inhibin-like effects in cultured pituitary cells, selectively suppressing FSH production.
View Article and Find Full Text PDFMyostatin is a member of the transforming growth factor-beta (TGF-beta) family and a strong negative regulator of muscle growth. Here, we present the crystal structure of myostatin in complex with the antagonist follistatin 288 (Fst288). We find that the prehelix region of myostatin very closely resembles that of TGF-beta class members and that this region alone can be swapped into activin A to confer signalling through the non-canonical type I receptor Alk5.
View Article and Find Full Text PDF