More than 65 years ago, John Wheeler suggested that quantum uncertainties of the metric would be of order one at the Planck scale, leading to large fluctuations in spacetime geometry and topology, which he termed 'spacetime foam.' In this review I discuss various attempts to implement this idea and to test it, both theoretically and, to a lesser extent, observationally.
View Article and Find Full Text PDFPerhaps standard effective field theory arguments are right, and vacuum fluctuations really do generate a huge cosmological constant. I show that if one does not assume homogeneity and an arrow of time at the Planck scale, a very large class of general relativistic initial data exhibit expansions, shears, and curvatures that are enormous at small scales, but quickly average to zero macroscopically. Subsequent evolution is more complex, but I argue that quantum fluctuations may preserve these properties.
View Article and Find Full Text PDFNear the horizon, the obvious symmetries of a black hole spacetime-the horizon-preserving diffeomorphisms-are enhanced to a larger symmetry group with a three-dimensional Bondi-Metzner-Sachs algebra. Using dimensional reduction and covariant phase space techniques, I investigate this augmented symmetry and show that it is strong enough to determine the black hole entropy in any dimension.
View Article and Find Full Text PDFAt the horizon of a black hole, the action of (3+1)-dimensional loop quantum gravity acquires a boundary term that is formally identical to an action for three-dimensional gravity. I show how to use this correspondence to obtain the entropy of the (3+1)-dimensional black hole from well-understood conformal field theory computations of the entropy in (2+1)-dimensional de Sitter space.
View Article and Find Full Text PDFWe show that vacuum fluctuations of the stress-energy tensor in two-dimensional dilaton gravity lead to a sharp focusing of light cones near the Planck scale, effectively breaking space up into a large number of causally disconnected regions. This phenomenon, called "asymptotic silence" when it occurs in cosmology, might help explain several puzzling features of quantum gravity, including evidence of spontaneous dimensional reduction at short distances. While our analysis focuses on a simplified two-dimensional model, we argue that the qualitative features should still be present in four dimensions.
View Article and Find Full Text PDFTo explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal.
View Article and Find Full Text PDFIn three spacetime dimensions, general relativity drastically simplifies, becoming a "topological" theory with no propagating local degrees of freedom. Nevertheless, many of the difficult conceptual problems of quantizing gravity are still present. In this review, I summarize the rather large body of work that has gone towards quantizing (2 + 1)-dimensional vacuum gravity in the setting of a spatially closed universe.
View Article and Find Full Text PDFThe near-horizon geometry of a large class of extremal and near-extremal black holes in string and M-theory contains three-dimensional asymptotically anti-de Sitter space. Motivated by this structure, we are led naturally to a discrete set of complex frequencies defined in terms of the monodromy at the inner and outer horizons of the black hole. We show that the correspondence principle, whereby the real part of these "nonquasinormal frequencies" is identified with certain fundamental quanta, leads directly to the correct quantum behavior of the near-horizon Virasoro algebra, and thus the black hole entropy.
View Article and Find Full Text PDFNear an event horizon, the action of general relativity acquires a new asymptotic conformal symmetry. For two-dimensional dilaton gravity, this symmetry results in a chiral Virasoro algebra, and Cardy's formula for the density of states reproduces the Bekenstein-Hawking entropy. This lends support to the notion that black hole entropy is controlled universally by conformal symmetry near the horizon.
View Article and Find Full Text PDFPhys Rev D Part Fields
January 1995
Phys Rev D Part Fields
May 1993
Phys Rev D Part Fields
February 1993
Phys Rev D Part Fields
November 1992
Phys Rev D Part Fields
October 1990