Publications by authors named "Carling D"

Objectives: There is renewed interest in targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) for treatment of obesity and type 2 diabetes. G-protein coupled receptor desensitisation is suggested to reduce the long-term efficacy of glucagon-like-peptide 1 receptor (GLP-1R) agonists and may similarly affect the efficacy of GIPR agonists. We explored the extent of pancreatic GIPR functional desensitisation with sustained agonist exposure.

View Article and Find Full Text PDF

Efficient delivery of sensitive nucleic acid payloads, including mRNA, in remains challenging, especially with traditional, labor-intensive transgenesis methods. We addressed these challenges using polymeric nanogels (NGs) as an advanced platform for mRNA delivery in . These polymeric delivery vehicles can be engineered to suit desired applications owing to their chemical versatility, resulting from the ability to conjugate multiple functional groups onto the same backbone.

View Article and Find Full Text PDF

Aims: Acute hypoglycaemia promotes pro-inflammatory cytokine production, increasing the risk for cardiovascular events in diabetes. AMP-activated protein kinase (AMPK) is regulated by and influences the production of pro-inflammatory cytokines. We sought to examine the mechanistic role of AMPK in low glucose-induced changes in the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF), which is elevated in people with diabetes.

View Article and Find Full Text PDF

In eukaryotic cells, AMP-activated protein kinase (AMPK) plays a central role in responding to nutrient limitation by switching-off ATP-consuming (anabolic) pathways and switching-on ATP generating (catabolic) pathways. Over the last 30 years or so, a considerable body of research has been carried out that has provided us with a wealth of knowledge regarding the regulation and role of AMPK. Despite this, there is still much to learn about AMPK and the field remains highly active, with many groups around the world continuing to explore new roles for AMPK, providing insight into its biological function.

View Article and Find Full Text PDF
Article Synopsis
  • Interleukin 11 (IL11) was initially developed as a treatment for low platelet levels but has shown serious cardiac side effects, prompting researchers to investigate its toxic effects on heart cells for the first time.
  • The study involved injecting recombinant IL11 into mice and using various scientific techniques to assess its effects on heart function and gene expression, revealing drastic reductions in heart performance and increased activation of inflammatory pathways.
  • Findings from cardiomyocyte-specific knockout mouse models showed that IL11 directly induces stress responses and gene expression changes in heart cells, further solidifying its role in heart toxicity rather than protection.
View Article and Find Full Text PDF

Objective: Glucagon has long been proposed as a component of multi-agonist obesity therapeutics due to its ability to induce energy expenditure and cause weight loss. However, chronic glucagon-receptor agonism has been associated with a reduction in circulating amino acids and loss of lean mass. Importantly, it is currently not known whether the metabolic benefits of glucagon can be maintained under contexts that allow the defence of lean mass.

View Article and Find Full Text PDF

For healthspan and lifespan, ERK, AMPK and mTORC1 represent critical pathways and inflammation is a centrally important hallmark. Here we examined whether IL-11, a pro-inflammatory cytokine of the IL-6 family, has a negative effect on age-associated disease and lifespan. As mice age, IL-11 is upregulated across cell types and tissues to regulate an ERK-AMPK-mTORC1 axis to modulate cellular, tissue- and organismal-level ageing pathologies.

View Article and Find Full Text PDF

Objectives: Co-agonists at the glucagon-like peptide-1 and glucagon receptors (GLP1R/GCGR) show promise as treatments for metabolic dysfunction-associated steatotic liver disease (MASLD). Although most co-agonists to date have been heavily GLP1R-biased, glucagon directly acts on the liver to reduce fat content. The aims of this study were to investigate a GCGR-biased co-agonist as treatment for hepatic steatosis in mice.

View Article and Find Full Text PDF

Adipogenesis, defined as the development of mature adipocytes from stem cell precursors, is vital for the expansion, turnover and health of adipose tissue. Loss of adipogenic potential in adipose stem cells, or impairment of adipogenesis is now recognised as an underlying cause of adipose tissue dysfunction and is associated with metabolic disease. In this study, we sought to determine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved master regulator of energy homeostasis, in adipogenesis.

View Article and Find Full Text PDF

Background And Aims: Sleeve gastrectomy (VSG) leads to improvement in hepatic steatosis, associated with weight loss. The aims of this study were to investigate whether VSG leads to weight-loss independent improvements in liver steatosis in mice with diet-induced obesity (DIO); and to metabolically and transcriptomically profile hepatic changes in mice undergoing VSG.

Methods: Mice with DIO were treated with VSG, sham surgery with subsequent food restriction to weight-match to the VSG group (Sham-WM), or sham surgery with return to unrestricted diet (Sham-Ad lib).

View Article and Find Full Text PDF

Background: Current strategies to inhibit androgen receptor (AR) are circumvented in castration-resistant prostate cancer (CRPC). Cyclin-dependent kinase 7 (CDK7) promotes AR signalling, in addition to established roles in cell cycle and global transcription, providing a rationale for its therapeutic targeting in CRPC.

Methods: The antitumour activity of CT7001, an orally bioavailable CDK7 inhibitor, was investigated across CRPC models in vitro and in xenograft models in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Emerging evidence suggests that metabolic dysregulation plays a significant role in the progression and spread of prostate cancer (PCa).
  • Activation of AMP-activated protein kinase (AMPK), either through genetic means or medication, appears to hinder PCa progression by inducing a shift in metabolism to a more catabolic state, promoting fat burning, and reducing cell growth and invasiveness.
  • The study also discovered a link between AMPK activation and a gene network that regulates the cell cycle, indicating potential therapeutic benefits of AMPK activators for improving outcomes in PCa patients.
View Article and Find Full Text PDF

Glucagon analogs show promise as components of next-generation, multi-target, anti-obesity therapeutics. The biology of chronic glucagon treatment, in particular, its ability to induce energy expenditure and weight loss, remains poorly understood. Using a long-acting glucagon analog, G108, we demonstrate that glucagon-mediated body weight loss is intrinsically linked to the hypoaminoacidemia associated with its known amino acid catabolic action.

View Article and Find Full Text PDF

IL11 initiates fibroblast activation but also causes epithelial cell dysfunction. The mechanisms underlying these processes are not known. We report that IL11-stimulated ERK/P90RSK activity causes the phosphorylation of LKB1 at S325 and S428, leading to its inactivation.

View Article and Find Full Text PDF

Objective: To determine whether glucagon receptor (GCGR) actions are modulated by cellular cholesterol levels.

Methods: We determined the effects of experimental cholesterol depletion and loading on glucagon-mediated cAMP production, ligand internalisation and glucose production in human hepatoma cells, mouse and human hepatocytes. GCGR interactions with lipid bilayers were explored using coarse-grained molecular dynamic simulations.

View Article and Find Full Text PDF

Neuroblastoma is the most common paediatric solid tumour and prognosis remains poor for high-risk cases despite the use of multimodal treatment. Analysis of public drug sensitivity data showed neuroblastoma lines to be sensitive to indisulam, a molecular glue that selectively targets RNA splicing factor RBM39 for proteosomal degradation via DCAF15-E3-ubiquitin ligase. In neuroblastoma models, indisulam induces rapid loss of RBM39, accumulation of splicing errors and growth inhibition in a DCAF15-dependent manner.

View Article and Find Full Text PDF

Aims/hypothesis: Although targeted in extrapancreatic tissues by several drugs used to treat type 2 diabetes, the role of AMP-activated protein kinase (AMPK) in the control of insulin secretion is still debatable. Previous studies have used pharmacological activators of limited selectivity and specificity, and none has examined in primary pancreatic beta cells the actions of the latest generation of highly potent and specific activators that act via the allosteric drug and metabolite (ADaM) site.

Methods: AMPK was activated acutely in islets isolated from C57BL6/J mice, and in an EndoC-βH3 cell line, using three structurally distinct ADaM site activators (991, PF-06409577 and RA089), with varying selectivity for β1- vs β2-containing complexes.

View Article and Find Full Text PDF

In fibroblasts, TGFβ1 stimulates IL11 upregulation that leads to an autocrine loop of IL11-dependent pro-fibrotic protein translation. The signaling pathways downstream of IL11, which acts via IL6ST, are contentious with both STAT3 and ERK implicated. Here we dissect IL11 signaling in fibroblasts and study IL11-dependent protein synthesis pathways in the context of approved anti-fibrotic drug mechanisms of action.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) plays a key role in the cellular response to low energy stress and has emerged as an attractive therapeutic target for tackling metabolic diseases. Whilst significant progress has been made regarding the physiological role of AMPK, its function in the kidney remains only partially understood. We use a mouse model expressing a constitutively active mutant of AMPK to investigate the effect of AMPK activation on kidney function in vivo.

View Article and Find Full Text PDF

No approved therapies are available for nonalcoholic steatohepatitis (NASH). Adenosine monophosphate-activated protein kinase (AMPK) is a central regulator of cell metabolism; its activation has been suggested as a therapeutic approach to NASH. Here we aimed to fully characterize the potential for direct AMPK activation in preclinical models and to determine mechanisms that could contribute to efficacy for this disease.

View Article and Find Full Text PDF

Objectives: Receptor Activity-Modifying Protein 2 (RAMP2) is a chaperone protein which allosterically binds to and interacts with the glucagon receptor (GCGR). The aims of this study were to investigate the effects of RAMP2 on GCGR trafficking and signalling in the liver, where glucagon (GCG) is important for carbohydrate and lipid metabolism.

Methods: Subcellular localisation of GCGR in the presence and absence of RAMP2 was investigated using confocal microscopy, trafficking and radioligand binding assays in human embryonic kidney (HEK293T) and human hepatoma (Huh7) cells.

View Article and Find Full Text PDF
Article Synopsis
  • Cell competition is a process that helps get rid of weak or unhealthy cells in the body, especially during early development in mice.
  • Researchers found that cells with problems in their mitochondria (which help produce energy) are the ones mostly eliminated during this process.
  • They discovered that even small changes in mitochondrial DNA can cause these cells to be removed, making sure that the stronger, healthier cells stay to support proper development.
View Article and Find Full Text PDF

Objective: Skeletal muscle is an attractive target for blood glucose-lowering pharmacological interventions. Oral dosing of small molecule direct pan-activators of AMPK that bind to the allosteric drug and metabolite (ADaM) site, lowers blood glucose through effects in skeletal muscle. The molecular mechanisms responsible for this effect are not described in detail.

View Article and Find Full Text PDF