Background: Predicting an individual's risk of death from COVID-19 is essential for planning and optimising resources. However, since the real-world mortality rate is relatively low, particularly in places like Hong Kong, this makes building an accurate prediction model difficult due to the imbalanced nature of the dataset. This study introduces an innovative application of graph convolutional networks (GCNs) to predict COVID-19 patient survival using a highly imbalanced dataset.
View Article and Find Full Text PDFElectromyography-assisted optimization (EMGAO) approach is widely used to predict lumbar joint loads under various dynamic and static conditions. However, such approach uses numerous anthropometric, kinematic, kinetic, and electromyographic data in the computation process, and thus makes data collection and processing complicated. This study developed an electromyography-based support vector machine (EMGB_SVM) approach for predicting lumbar spine load during walking with backpack loads.
View Article and Find Full Text PDF