Previous investigations identified 2'-C-Me-branched ribo-C-nucleoside adenosine analogues, 1, which contains a pyrrolo[2,1-f][1,2,4]triazin-4-amine heterocyclic base, and 2, which contains an imidazo[2,1-f][1,2,4]triazin-4-amine heterocyclic base as two compounds with promising anti-HCV in vitro activity. This Letter describes the synthesis and evaluation of a series of novel analogues of these compounds substituted at the 2-, 7-, and 8-positions of the heterocyclic bases. A number of active new HCV inhibitors were identified but most compounds also demonstrated unacceptable cytotoxicity.
View Article and Find Full Text PDFA series of dual-targeting, alcohol-containing benzothiazoles has been identified with superior antibacterial activity and drug-like properties. Early lead benzothiazoles containing carboxylic acid moieties showed efficacy in a well-established in vivo model, but inferior drug-like properties demanded modifications of functionality capable of demonstrating superior efficacy. Eliminating the acid group in favor of hydrophilic alcohol moieties at C(5), as well as incorporating solubilizing groups at the C(7) position of the core ring provided potent, broad-spectrum Gram-positive antibacterial activity, lower protein binding, and markedly improved efficacy in vivo.
View Article and Find Full Text PDFNucleoside analogues have long been recognized as prospects for the discovery of direct acting antivirals (DAAs) to treat hepatitis C virus because they have generally exhibited cross-genotype activity and a high barrier to resistance. C-Nucleosides have the potential for improved metabolism and pharmacokinetic properties over their N-nucleoside counterparts due to the presence of a strong carbon-carbon glycosidic bond and a non-natural heterocyclic base. Three 2'CMe-C-adenosine analogues and two 2'CMe-guanosine analogues were synthesized and evaluated for their anti-HCV efficacy.
View Article and Find Full Text PDFThe discovery and optimisation of a new class of benzothiazole small molecules that inhibit bacterial DNA gyrase and topoisomerase IV are described. Antibacterial properties have been demonstrated by activity against DNA gyrase ATPase and potent activity against Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes and Haemophilus influenzae. Further refinements to the scaffold designed to enhance drug-likeness included analogues bearing an α-substituent to the carboxylic acid group, resulting in excellent solubility and favourable pharmacokinetic properties.
View Article and Find Full Text PDFGalactose-based phosphonate analogues of myo-inositol-1-phosphate and phosphatidylinositol have been synthesized from methyl beta-d-galactopyranoside. Michaelis-Arbuzov reaction of isopropyl diphenyl phosphite or triisopropyl phosphite with a 6-iodo-3,4-isopropylidene galactoside afforded the corresponding phosphonates. Deprotection of the diphenyl phosphonate afforded methyl beta-d-galactoside 6-phosphonate, an analogue of myo-inositol-1-phosphate.
View Article and Find Full Text PDFLeishmania spp. are human pathogens that utilize a novel beta-1,2-mannan as their major carbohydrate reserve material. We describe a new approach that combines traditional substrate-modification methods and "click chemistry" to assemble a library of modified substrates that were used to qualitatively define the substrate tolerance of the Leishmania beta-1,2-mannosyltransferases responsible for beta-1,2-mannan biosynthesis.
View Article and Find Full Text PDF