Lidar (light-detection and ranging) has revolutionized archaeology. We are now able to produce high-resolution maps of archaeological surface features over vast areas, allowing us to see ancient land-use and anthropogenic landscape modification at previously un-imagined scales. In the tropics, this has enabled documentation of previously archaeologically unrecorded cities in various tropical regions, igniting scientific and popular interest in ancient tropical urbanism.
View Article and Find Full Text PDFWe report an assessment of the ability of the Locally-Adaptive Model of Archaeological Potential (LAMAP) to estimate archaeological potential in relation to hunter-gatherer sites. The sample comprised 182 known sites in the Tanana Valley, Alaska, which was occupied solely by hunter-gatherers for about 14,500 years. To estimate archaeological potential, we employed physiographic variables such as elevation and slope, rather than variables that are known to vary on short time scales, like vegetation cover.
View Article and Find Full Text PDFPleistocene hominin dispersals out of, and back into, Africa necessarily involved traversing the diverse and often challenging environments of Southwest Asia. Archaeological and palaeontological records from the Levantine woodland zone document major biological and cultural shifts, such as alternating occupations by Homo sapiens and Neanderthals. However, Late Quaternary cultural, biological and environmental records from the vast arid zone that constitutes most of Southwest Asia remain scarce, limiting regional-scale insights into changes in hominin demography and behaviour.
View Article and Find Full Text PDFStudies published over the last decade have reached contrasting conclusions regarding the impact of climate change on conflict among the Classic Maya (ca. 250-900 CE). Some researchers have argued that rainfall declines exacerbated conflict in this civilisation.
View Article and Find Full Text PDFThe disappearance of many North American megafauna at the end of the Pleistocene is a contentious topic. While the proposed causes for megafaunal extinction are varied, most researchers fall into three broad camps emphasizing human overhunting, climate change, or some combination of the two. Understanding the cause of megafaunal extinctions requires the analysis of through-time relationships between climate change and megafauna and human population dynamics.
View Article and Find Full Text PDFStatistical time-series analysis has the potential to improve our understanding of human-environment interaction in deep time. However, radiocarbon dating-the most common chronometric technique in archaeological and palaeoenvironmental research-creates challenges for established statistical methods. The methods assume that observations in a time-series are precisely dated, but this assumption is often violated when calibrated radiocarbon dates are used because they usually have highly irregular uncertainties.
View Article and Find Full Text PDFEnviron Monit Assess
November 2014
Although many studies focus on mercury (Hg) and methylmercury (MeHg) dynamics in streams, challenges remain in identifying the relative importance of land cover and seasonality at regulating Hg and MeHg dynamics at the watershed scale. Developing robust proxies for Hg and/or MeHg determination also remains a challenge. Our study used Hg, MeHg, and dissolved organic carbon (DOC) concentration measurements and various DOC fluorescence indices to characterize Hg and DOC dynamics in a forested watershed of the US Northeast.
View Article and Find Full Text PDF