Publications by authors named "Carlessi L"

Ethnopharmacological Relevance: Studies have shown interest in nutraceuticals for the prevention of liver diseases. Methoxyeugenol, is a molecule found in foods, such as nutmeg (Myristica fragrans Houtt.) and Brazilian red propolis.

View Article and Find Full Text PDF

Potassium 5-cyano-4-methyl-6-oxo-1,6-dihydropyridine-2-olate (CPBMF65) is a potent inhibitor of the uridine phosphorylase 1 (UPP1) enzyme. Its non-ionized analog has already demonstrated biological properties by reducing adverse effects caused by the chemotherapeutic 5-fluorouracil (5-FU). In addition, it has been demonstrated that uridine inhibits inflammation and fibrosis in bleomycin lung injury, decreasing collagen production.

View Article and Find Full Text PDF

Fructose-1,6-bisphosphate (F1,6BP), an intermediate of the glycolytic pathway, has been found to play a promising anticancer effect; nevertheless, the mechanisms involved remain poorly understood. The present study aimed to evaluate the effect and mechanisms of F1,6BP in a human endometrial cancer cell line (Ishikawa). F1,6BP showed an antiproliferative and non-cytotoxic effect on endometrial cancer cells.

View Article and Find Full Text PDF

ATM is a kinase involved in DNA damage response (DDR), regulation of response to oxidative stress, autophagy and mitophagy. Mutations in the ATM gene in humans result in ataxi A-Telangiectasia disease (A-T) characterized by a variety of symptoms with neurodegeneration and premature ageing among them. Since brain is one of the most affected organs in A-T, we have focused on senescence of neural progenitor cells (NPCs) derived from A-T reprogrammed fibroblasts.

View Article and Find Full Text PDF

Loss of ataxia telangiectasia mutated (ATM) kinase, a key factor of the DNA damage response (DDR) pathway, causes the cancer predisposing and neurodegenerative syndrome ataxia-telangiectasia (A-T). To investigate the mechanisms of neurodegeneration, we have reprogrammed fibroblasts from ATM-null A-T patients and normal controls to pluripotency (human-induced pluripotent stem cells), and derived from these neural precursor cells able to terminally differentiate into post-mitotic neurons positive to >90% for β-tubulin III+/microtubule-associated protein 2+. We show that A-T neurons display similar voltage-gated potassium and sodium currents and discharges of action potentials as control neurons, but defective expression of the maturation and synaptic markers SCG10, SYP and PSD95 (postsynaptic density protein 95).

View Article and Find Full Text PDF

Mucopolysaccharidosis type II (MPSII or Hunter Syndrome) is a lysosomal storage disorder caused by the deficit of iduronate 2-sulfatase (IDS) activity and characterized by progressive systemic and neurological impairment. As the early mechanisms leading to neuronal degeneration remain elusive, we chose to examine the properties of neural stem cells (NSCs) isolated from an animal model of the disease in order to evaluate whether their neurogenic potential could be used to recapitulate the early phases of neurogenesis in the brain of Hunter disease patients. Experiments here reported show that NSCs derived from the subventricular zone (SVZ) of early symptomatic IDS-knockout (IDS-ko) mouse retained self-renewal capacity in vitro, but differentiated earlier than wild-type (wt) cells, displaying an evident lysosomal aggregation in oligodendroglial and astroglial cells.

View Article and Find Full Text PDF

Most human neuronal disorders are associated with genetic alterations that cause defects in neuronal development and induce precocious neurodegeneration. In order to fully characterize the molecular mechanisms underlying the onset of these devastating diseases, it is important to establish in vitro models able to recapitulate the human pathology as closely as possible. Here we compared three different differentiation protocols for obtaining functional neurons from human induced pluripotent stem cells (hiPSCs): human neural progenitors (hNPs) obtained from hiPSCs were differentiated by co-culturing them with rat primary neurons, glial cells or simply by culturing them on matrigel in neuronal differentiation medium, and the differentiation level was compared using immunofluorescence, biochemical and electrophysiological methods.

View Article and Find Full Text PDF

Loss of ATM kinase, a transducer of the DNA damage response and redox sensor, causes the neurodegenerative disorder ataxia-telangiectasia (A-T). While a great deal of progress has been made in elucidating the ATM-dependent DNA damage response (DDR) network, a key challenge remains in understanding the selective susceptibility of the nervous system to faulty DDR. Several factors appear implicated in the neurodegenerative phenotype in A-T, but which of them plays a crucial role remains unclear, especially since mouse models of A-T do not fully mirror the respective human syndrome.

View Article and Find Full Text PDF

The ataxia telangiectasia mutated (ATM) kinase is a key transducer of the cellular response to DNA double strand breaks and its deficiency causes ataxia-telangiectasia (A-T), a pleiotropic genetic disorder primarily characterized by cerebellar neuropathy, immunodeficiency and cancer predisposition. While enormous progress has been achieved in elucidating the biochemical and functional regulation of ATM in DNA damage response, and more recently in redox signalling and antioxidant defence, the factors that make neurons in A-T extremely vulnerable remain unclear. Given also that ATM knockout mice do not recapitulate the central nervous system phenotype, a number of human neural stem cell (hNSC) model systems have been developed to provide insights into the mechanisms of neurodegeneration associated with ATM dysfunction.

View Article and Find Full Text PDF

Cell therapy is reaching the stage of phase I clinical trials for post-traumatic, post-ischemic, or neurodegenerative disorders, and the selection of the appropriate cell source is essential. In order to assess the capacity of different human neural stem cell lines (hNSC) to contribute to neural tissue regeneration and to reduce the local inflammation after an acute injury, we transplanted GMP-grade non-immortalized hNSCs and v-myc (v-IhNSC), c-myc T58A (T-IhNSC) immortalized cells into the corpus callosum of adult rats after 5 days from focal demyelination induced by lysophosphatidylcholine. At 15 days from transplantation, hNSC and T-IhNSC migrated to the lesioned area where they promoted endogenous remyelination and differentiated into mature oligodendrocytes, while the all three cell lines were able to integrate in the SVZ.

View Article and Find Full Text PDF

The checkpoint kinase Chk2 is an effector component of the ATM-dependent DNA damage response (DDR) pathway. The activation of Chk2 by genotoxic stress involves its phosphorylation on T68 by ATM and additional auto/transphosphorylations. Here we demonstrate that in unperturbed cells, chemical inhibition of Chk2 by VRX0466617 (VRX) enhances the phosphorylation of Chk2-T68 throughout the cell cycle phases.

View Article and Find Full Text PDF

Background: Neural stem cells (NSCs) represent an optimal tool for studies and therapy of neurodegenerative diseases. We recently established a v-myc immortalized human NSC (IhNSC) line, which retains stem properties comparable to parental cells. Oxygen concentration is one of the most crucial environmental conditions for cell proliferation and differentiation both in vitro and in vivo.

View Article and Find Full Text PDF

Ataxia-telangiectasia (A-T) is a neurodegenerative disorder caused by defects in the ATM kinase, a component of the DNA-damage response (DDR). Here, we employed an immortalized human neural stem-cell line (ihNSC) capable of differentiating in vitro into neurons, oligodendrocytes and astrocytes to assess the ATM-dependent response and outcome of ATM ablation. The time-dependent differentiation of ihNSC was accompanied by an upregulation of ATM and DNA-PK, sharp downregulation of ATR and Chk1, transient induction of p53 and by the onset of apoptosis in a fraction of cells.

View Article and Find Full Text PDF

REGgamma is a member of the 11S regulatory particle that activates the 20S proteasome. Studies in REGgamma deficient mice indicated an additional role for this protein in cell cycle regulation and proliferation control. In this paper we demonstrate that REGgamma protein is equally expressed throughout the cell cycle, but undergoes a distinctive subcellular localization at mitosis.

View Article and Find Full Text PDF

VRX0466617 is a novel selective small-molecule inhibitor for Chk2 discovered through a protein kinase screening program. In this study, we provide a detailed biochemical and cellular characterization of VRX0466617. We show that VRX0466617 blocks the enzymatic activity of recombinant Chk2, as well as the ionizing radiation (IR)-induced activation of Chk2 from cells pretreated with the compound, at doses between 5 and 10 micromol/L.

View Article and Find Full Text PDF

Chk2 kinase is activated by DNA damage to regulate cell cycle arrest, DNA repair, and apoptosis. Phosphorylation of Chk2 in vivo by ataxia telangiectasia-mutated (ATM) on threonine 68 (T68) initiates a phosphorylation cascade that promotes the full activity of Chk2. We identified three serine residues (S19, S33, and S35) on Chk2 that became phosphorylated in vivo rapidly and exclusively in response to ionizing radiation (IR)-induced DNA double-strand breaks in an ATM- and Nbs1-dependent but ataxia telangiectasia- and Rad3-related-independent manner.

View Article and Find Full Text PDF

Hypomorphic mutations of the MRE11 gene are the hallmark of the radiosensitive ataxia-telangiectasia-like disorder (ATLD). Here, we describe a new family with two affected siblings, ATLD5 and ATLD6, now aged 37 and 36, respectively. They presented with late onset cerebellar degeneration slowly progressing until puberty and absence of telangiectasias, and were cancer-free.

View Article and Find Full Text PDF