Using nonequilibrium computer simulations, we study the response of ferromagnetic nanofilaments, consisting of stabilized one dimensional chains of ferromagnetic nanoparticles, under external rotating magnetic fields. In difference with their analogous microscale and stiff counterparts, which have been actively studied in recent years, nonequilibrium properties of rather flexible nanoparticle filaments remain mostly unexplored. By progressively increasing the modeling details, we are able to evidence the qualitative impact of main interactions that can not be neglected at the nanoscale, showing that filament flexibility, thermal fluctuations and hydrodynamic interactions contribute independently to broaden the range of synchronous frequency response in this system.
View Article and Find Full Text PDFThe pair-interaction force profiles for two non-magnetic colloids immersed in a suspension of ferromagnetic colloidal polymers are investigated via Langevin simulations. A quasi-two-dimensional approach is taken to study the interface case and a range of colloidal size ratios (non-magnetic:magnetic) from 6:1 up to 20:1 have been considered in this work. Simulations show that when compared with non-magnetic suspensions, the magnetic polymers strongly modify the depletion force profiles leading to strongly oscillatory behavior.
View Article and Find Full Text PDFThe behaviour of supramolecular brushes, whose filaments are composed of sequences of magnetic and non-magnetic colloidal particles, has been studied using Langevin dynamics simulations. Two types of brushes have been considered: sticky or Stockmayer brushes (SB) and non-sticky magnetic brushes (NSB). In both cases, the microstructure and the collective behaviour have been analysed for a wide range of magnetic field strengths including the zero-field case, and negative fields.
View Article and Find Full Text PDFIn the present work magnetic brushes under flow conditions and confined inside narrow slits have been studied using Langevin dynamics simulations. It has been observed that the structural properties of these confined magnetic brushes can be tuned via the application of an external magnetic field, and this control can be exerted with a relatively low content of magnetic colloidal particles in the filaments that form the brushes (20% in the present study). The potential of these brushes to perform a separation process of a size-bidispersed mixture of free non-magnetic colloidal particles flowing through the slit has also been explored.
View Article and Find Full Text PDFExcessive migration and proliferation of smooth muscle cells (SMCs) has been observed as a major factor contributing to the development of in-stent restenosis after coronary stenting. Building upon the results from in vivo experiments, we formulated a hypothesis that the speed of the initial tissue re-growth response is determined by the early migration of SMCs from the injured intima. To test this hypothesis, a cellular Potts model of the stented artery is developed where stent struts were deployed at different depths into the tissue.
View Article and Find Full Text PDFThe implantation of stents has been used to treat coronary artery stenosis for several decades. Although stenting is successful in restoring the vessel lumen and is a minimally invasive approach, the long-term outcomes are often compromised by in-stent restenosis (ISR). Animal models have provided insights into the pathophysiology of ISR and are widely used to evaluate candidate drug inhibitors of ISR.
View Article and Find Full Text PDFRe-establishing a functional endothelium following endovascular treatment is an important factor in arresting neointimal proliferation. In this study, both histology (in vivo) and computational simulations (in silico) are used to evaluate neointimal growth patterns within coronary arteries along the axial direction of the stent. Comparison of the growth configurations in vivo and in silico was undertaken to identify candidate mechanisms for endothelial repair.
View Article and Find Full Text PDFTreatment of stenosed coronary arteries by balloon angioplasty and stenting results in arterial injury including severe damage to the endothelium at the site of treatment and initiates a complex cascade of inflammatory processes that may lead to the development of in-stent restenosis (ISR). Many clinical and biological factors involved in the progression of restenotic lesions have been studied in detail over the past few years but the mystery behind the pathophysiological mechanisms of this disease is still unresolved. In the present work, the effects of re-endothelialization and nitric oxide release on neointimal growth are investigated in-silico using a two dimensional multi-scale model of ISR.
View Article and Find Full Text PDF