Publications by authors named "Carles Acosta-Silva"

The effect of solvent reaction fields and oriented electric fields on the Kemp elimination reaction between methylamine or imidazole and 5-nitrobenzisoxazole has been theoretically studied. The Kemp reaction is the most widely used for the design of new enzymes. Our results, using the SMD continuous model for solvents, are in quite good agreement with the experimental fact that the rate of the analogous reaction with butylamine is one order of magnitude smaller in water than in acetonitrile.

View Article and Find Full Text PDF

The Kemp elimination reaction is the most widely used in the de novo design of new enzymes. The effect of two different kinds of electric fields in the reactions of acetate as a base with benzisoxazole and 5-nitrobenzisoxazole as substrates have been theoretically studied. The effect of the solvent reaction field has been calculated using the SMD continuum model for several solvents; we have shown that solvents inhibit both reactions, the decrease of the reaction rate being larger as far as the dielectric constant is increased.

View Article and Find Full Text PDF

The phosphoryl-transfer reaction in RNA under alkaline conditions by exploring the influence of several solvents theoretically was studied. The calculations were carried out by using the M06-2X functional and the solvents were taken as a continuum by using the solvent model density (SMD) method. The main findings show that the O2'-P-O5' angle in the reactants, the free activation energies, and the reaction mechanism are clearly dependent on the dielectric constant of the environment, thus showing that the electrostatic term is the determining factor for this chemical system with two negative charges.

View Article and Find Full Text PDF

A proton shuttle mechanism for the phosphoryl transfer reaction in RNA, in which a proton is transferred from the nucleophile to the leaving group through a nonbridged oxygen atom of the phosphate, was explored using the MO6-2X density functional method and the solvent continuum model. This reaction is the initial step of the RNA hydrolysis. We used different solvents characterized by their dielectric constant, and, for each of them, we studied the nuclear and electronic relaxation, produced by the solvent reaction field, for the stationary points.

View Article and Find Full Text PDF

The purpose of this work is to have a better understanding of the mechanism of GTP hydrolysis catalyzed by the elongation factor Tu. Two main aspects are being discussed in the literature: the associative or dissociative character of the process and the nature of nucleophile activation. The calculations of the QM subsystem have been done by means of the M06-2X density functional and the split valence triple-ζ 6-311+G(d,p) basis set.

View Article and Find Full Text PDF

A quantum mechanical study of different two-step mechanisms of peptide release in the ribosome has been carried out using the M06-2X density functional. Reoptimization with MP2 has also been carried out for the stationary points of some selected mechanisms. The uncatalyzed processes in solution have been treated with the SMD solvation model.

View Article and Find Full Text PDF

A quantum mechanical study of different concerted mechanisms of peptide release in the ribosome has been carried out using the M06-2X density functional. Reoptimization with MP2 has also been carried out for the stationary points of some selected mechanisms. The uncatalyzed processes in solution have been treated with the SMD solvation model.

View Article and Find Full Text PDF

Ribosomes transform the genetic information encoded within genes into proteins. In recent years, there has been much progress in the study of this complex molecular machine, but the mechanism of peptide bond formation and the origin of the catalytic power of this ancient enzymatic system are still an unsolved puzzle. A quantum-mechanical study of different possible mechanisms of peptide synthesis in the ribosome has been carried out using the M06-2X density functional.

View Article and Find Full Text PDF

Two diastereomeric series of hybrid γ,γ-peptides derived from conveniently protected derivatives of (1R,2S)- and (1S,2R)-3-amino-2,2-dimethylcyclobutane-1-carboxylic acid and cis-4-amino-L: -proline joined in alternation have efficiently been prepared through convergent synthesis. High-resolution NMR experiments show that these compounds present defined conformations in solution affording very compact structures as the result of intra and inter residue hydrogen-bonded ring formation. (R,S)-cyclobutane containing peptides adopt more twisted conformations than (S,R) diastereomers.

View Article and Find Full Text PDF

The mutual relationship between stacking and hydrogen-bonding and the possible influence of stacking in the different behavior of cytosine (C) and 5-methylcytosine (C') in DNA have been studied through complete DFT optimization of different structures of G-C and G-C' dimers (i.e., G-C/C-G and G-C'/C'-G), using four different functionals.

View Article and Find Full Text PDF

The synthesis of a new family of boryl-substituted methylenephosphonium derivatives, the phosphorus analogues of iminium salts, has been developed. They were used in the preparation of the first stable boryl(phosphino)carbene, which has been fully characterized by NMR spectroscopy and X-ray crystallography. Density functional theory calculations indicate that these carbenes can be classified as push-pull carbenes with a relatively small singlet-triplet energy gap.

View Article and Find Full Text PDF

The reactions of a model sulfur ylide with formaldehyde and 1,1-dicianoethylene, leading to the formation of an epoxyde and a cyclopropane, respectively, have been studied using different computational methods, and the results have been compared to those obtained with the CBS-QB3 method. The second step of these reactions presents transition states similar to that of an SN2 reaction. Depending on the degree of electron delocalization at the transition state, a different amount of exact exchange is necessary in the exchange functional to obtain accurate energy barriers.

View Article and Find Full Text PDF