Publications by authors named "Carla Valeria Filippi"

Article Synopsis
  • Maize landraces in Northern Argentina exhibit high genetic diversity and are crucial for maize breeding, with 57 traditional races found in distinct regions facing various environmental challenges.
  • The study utilized genome-wide SNP analysis to identify two main gene pools: highland northwestern maize (HNWA) and floury northeastern maize (FNEA), both showing signs of genetic erosion.
  • Climate change projections indicate a significant reduction in potential planting areas for HNWA and a shift in FNEA cultivation, highlighting the vulnerability of these traditional maize varieties to environmental changes.
View Article and Find Full Text PDF

is one of the most important species for short-fiber pulp production in regions where other species of the genus are affected by poor soil and climatic conditions. In this context, holds promise as a resource to address and adapt to the challenges of climate change. Despite its rapid growth and favorable wood properties for solid wood products, the advancement of its improvement remains in its early stages.

View Article and Find Full Text PDF

Double digest restriction-site associated DNA sequencing (ddRADseq) technology combines genome reduced representation by digestion with two restriction enzymes and next generation sequencing (NGS) to obtain thousands of markers (SNP, SSR, and InDels) and genotype tens to hundreds of samples simultaneously. In this chapter, we describe a 96-plex derived ddRADseq protocol that can be set up to obtain different depth of coverage per locus and can be exploited to model and non-model plant species.

View Article and Find Full Text PDF

Diseases caused by necrotrophic fungi, such as the cosmopolitan Sclerotinia sclerotiorum and the Diaporthe/Phomopsis complex, are among the most destructive diseases of sunflower worldwide. The lack of complete resistance combined with the inefficiency of chemical control makes assisted breeding the best strategy for disease control. In this work, we present an integrated genome-wide association (GWA) study investigating the response of a diverse panel of sunflower inbred lines to both pathogens.

View Article and Find Full Text PDF

The article presents an optimization of the key parameters for the identification of SNPs in sugarcane using a GBS protocol based on two Illumina NextSeq and NovaSeq platforms. Sugarcane (Saccharum sp.), a world-wide known feedstock for sugar production, bioethanol, and energy, has an extremely complex genome, being highly polyploid and aneuploid.

View Article and Find Full Text PDF

Soybean ( (L.) Merr.) establishes symbiosis with rhizobacteria, developing the symbiotic nodule, where the biological nitrogen fixation (BNF) occurs.

View Article and Find Full Text PDF

The aim of this protocol is to provide a strategy for studying the eukaryotic translatome of the soybean (Glycine max) symbiotic nodule. This paper describes methods optimized to isolate plant-derived polyribosomes and their associated mRNAs to be analyzed using RNA-sequencing. First, cytoplasmic lysates are obtained through homogenization in polysome- and RNA-preserving conditions from whole, frozen soybean nodules.

View Article and Find Full Text PDF

Background: Plant innate immunity relies on a broad repertoire of receptor proteins that can detect pathogens and trigger an effective defense response. Bioinformatic tools based on conserved domain and sequence similarity are within the most popular strategies for protein identification and characterization. However, the multi-domain nature, high sequence diversity and complex evolutionary history of disease resistance (DR) proteins make their prediction a real challenge.

View Article and Find Full Text PDF

The Cactaceae family is native to the American continent with several centers of diversity. In South America, one of these centers is the Central Andes and many species are considered to be threatened or vulnerable according to the International Union for Conservation of Nature (IUCN). Stetsonia coryne is an emblematic giant columnar cacti of the Chaco phytogeographic province.

View Article and Find Full Text PDF

The advance of Next Generation Sequencing (NGS) technologies allows high-throughput genotyping at a reasonable cost, although, in the case of peach, this technology has been scarcely developed. To date, only a standard Genotyping by Sequencing approach (GBS), based on a single restriction with ApeKI to reduce genome complexity, has been applied in peach. In this work, we assessed the performance of the double-digest RADseq approach (ddRADseq), by testing 6 double restrictions with the restriction profile generated with ApeKI.

View Article and Find Full Text PDF

Sclerotinia Head Rot (SHR), a disease caused by Sclerotinia sclerotiorum, is one of the most limiting factors in sunflower production. In this study, we identified genomic loci associated with resistance to SHR to support the development of assisted breeding strategies. We genotyped 114 Recombinant Inbred Lines (RILs) along with their parental lines (PAC2 -partially resistant-and RHA266 -susceptible-) by using a 384 single nucleotide polymorphism (SNP) Illumina Oligo Pool Assay to saturate a sunflower genetic map.

View Article and Find Full Text PDF