We previously reported that in the absence of Prostaglandin D2 synthase (L-PGDS) peripheral nerves are hypomyelinated in development and that with aging they present aberrant myelin sheaths. We now demonstrate that L-PGDS expressed in Schwann cells is part of a coordinated program aiming at preserving myelin integrity. and lipidomic, metabolomic and transcriptomic analyses confirmed that myelin lipids composition, Schwann cells energetic metabolism and key enzymes controlling these processes are altered in the absence of L-PGDS.
View Article and Find Full Text PDFOrgan injury stimulates the formation of new capillaries to restore blood supply raising questions about the potential contribution of neoangiogenic vessel architecture to the healing process. Using single-cell mapping, we resolved the properties of endothelial cells that organize a polarized scaffold at the repair site of lesioned peripheral nerves. Transient reactivation of an embryonic guidance program is required to orient neovessels across the wound.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC, but their diversity has prevented therapeutic exploitation.
View Article and Find Full Text PDFPerineural invasion (PNI) is a common feature in pancreatic ductal adenocarcinoma (PDAC) and correlates with an aggressive tumor behavior already at early stages of disease. PNI is currently considered as a "present vs. absent" feature, and a severity score system has not yet been established.
View Article and Find Full Text PDFIn the developing central nervous system, oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes, which form myelin around axons. Oligodendrocytes and myelin are essential for the function of the central nervous system, as evidenced by the severe neurological symptoms that arise in demyelinating diseases such as multiple sclerosis and leukodystrophy. Although many cell-intrinsic mechanisms that regulate oligodendrocyte development and myelination have been reported, it remains unclear whether interactions among oligodendrocyte-lineage cells (OPCs and oligodendrocytes) affect oligodendrocyte development and myelination.
View Article and Find Full Text PDFSchwann cells in the peripheral nervous system (PNS) are essential for the support and myelination of axons, ensuring fast and accurate communication between the central nervous system and the periphery. Schwann cells and related glia accompany innervating axons in virtually all tissues in the body, where they exhibit remarkable plasticity and the ability to modulate pathology in extraordinary, and sometimes surprising, ways. Here, we provide a brief overview of the various glial cell types in the PNS and describe the cornerstone cellular and molecular processes that enable Schwann cells to perform their canonical functions.
View Article and Find Full Text PDFWe previously reported that a-disintegrin and metalloproteinase (ADAM)17 is a key protease regulating myelin formation. We now describe a role for ADAM17 during the Wallerian degeneration (WD) process. Unexpectedly, we observed that glial ADAM17, by regulating p75 processing, cell autonomously promotes remyelination, while neuronal ADAM17 is dispensable.
View Article and Find Full Text PDFDemyelination is a key pathogenic feature of multiple sclerosis (MS). Here, we evaluated the astrocyte contribution to myelin loss and focused on the neurotrophin receptor TrkB, whose up-regulation on the astrocyte finely demarcated chronic demyelinated areas in MS and was paralleled by neurotrophin loss. Mice lacking astrocyte TrkB were resistant to demyelination induced by autoimmune or toxic insults, demonstrating that TrkB signaling in astrocytes fostered oligodendrocyte damage.
View Article and Find Full Text PDFMyelin, one of the most important adaptations of vertebrates, is essential to ensure efficient propagation of the electric impulse in the nervous system and to maintain neuronal integrity. In the central nervous system (CNS), the development of oligodendrocytes and the process of myelination are regulated by the coordinated action of several positive and negative cell-extrinsic factors. We and others previously showed that secretases regulate the activity of proteins essential for myelination.
View Article and Find Full Text PDFWe have previously reported that prostaglandin D2 Synthase (L-PGDS) participates in peripheral nervous system (PNS) myelination during development. We now describe the role of L-PGDS in the resolution of PNS injury, similarly to other members of the prostaglandin synthase family, which are important for Wallerian degeneration (WD) and axonal regeneration. Our analyses show that L-PGDS expression is modulated after injury in both sciatic nerves and dorsal root ganglia neurons, indicating that it might play a role in the WD process.
View Article and Find Full Text PDFPerineural invasion (PNI) is defined as the presence of neoplastic cells along nerves and/or within the different layers of nervous fibers: epineural, perineural and endoneural spaces. In pancreatic cancer-particularly in pancreatic ductal adenocarcinoma (PDAC)-PNI has a prevalence between 70 and 100%, surpassing any other solid tumor. PNI has been detected in the early stages of pancreatic cancer and has been associated with pain, increased tumor recurrence and diminished overall survival.
View Article and Find Full Text PDFFront Cell Neurosci
March 2019
After damage, axons in the peripheral nervous system (PNS) regenerate and regrow following a process termed Wallerian degeneration, but the regenerative process is often incomplete and usually the system does not reach full recovery. Key steps to the creation of a permissive environment for axonal regrowth are the trans-differentiation of Schwann cells and the remodeling of the extracellular matrix (ECM). In this review article, we will discuss how proteases and secretases promote effective regeneration and remyelination.
View Article and Find Full Text PDFMyelin sheath thickness is precisely regulated and essential for rapid propagation of action potentials along myelinated axons. In the peripheral nervous system, extrinsic signals from the axonal protein neuregulin 1 (NRG1) type III regulate Schwann cell fate and myelination. Here we ask if modulating NRG1 type III levels in neurons would restore myelination in a model of congenital hypomyelinating neuropathy (CHN).
View Article and Find Full Text PDFCharcot-Marie-Tooth (CMT) neuropathies are a group of genetic disorders that affect the peripheral nervous system with heterogeneous pathogenesis and no available treatment. Axonal neuregulin 1 type III (Nrg1TIII) drives peripheral nerve myelination by activating downstream signaling pathways such as PI3K/Akt and MAPK/Erk that converge on master transcriptional regulators of myelin genes, such as Krox20. We reasoned that modulating Nrg1TIII activity may constitute a general therapeutic strategy to treat CMTs that are characterized by reduced levels of myelination.
View Article and Find Full Text PDFOur understanding of the processes controlling peripheral nervous system myelination have been significantly benefited by the development of an in vitro myelinating culture system in which primary Schwann cells are cocultured together with primary sensory neurons. In this chapter, we describe the protocol currently used in our laboratories to establish Schwann cells neuronal myelinating cocultures. We also include a detailed description of the various substrates that can be used to establish it.
View Article and Find Full Text PDFDeath receptor 6 (DR6) is an orphan member of the TNF receptor superfamily and controls cell death and differentiation in a cell-autonomous manner in different cell types. Here, we report an additional non-cell-autonomous function for DR6 in the peripheral nervous system (PNS). DR6-knockout (DR6 KO) mice showed precocious myelination in the PNS Using an myelination assay, we demonstrate that neuronal DR6 acts in on Schwann cells (SCs) and reduces SC proliferation and myelination independently of its cytoplasmic death domain.
View Article and Find Full Text PDFMyelin is required for proper nervous system function. Schwann cells in developing nerves depend on extrinsic signals from the axon and from the extracellular matrix to first sort and ensheathe a single axon and then myelinate it. Neuregulin 1 type III (Nrg1III) and laminin α2β1γ1 (Lm211) are the key axonal and matrix signals, respectively, but how their signaling is integrated and if each molecule controls both axonal sorting and myelination is unclear.
View Article and Find Full Text PDFSchwann cells (SCs) generate the myelin wrapping of peripheral nerve axons and are promising candidates for cell therapy. However, to date a renewable source of SCs is lacking. In this study, we show the conversion of skin fibroblasts into induced Schwann cells (iSCs) by driving the expression of two transcription factors, Sox10 and Egr2.
View Article and Find Full Text PDFThe aim of the present study is to investigate the molecular pathways underlying amyotrophic lateral sclerosis (ALS) pathogenesis within the peripheral nervous system. We analyzed gene expression changes in human motor nerve diagnostic biopsies obtained from eight ALS patients and seven patients affected by motor neuropathy as controls. An integrated transcriptomics and system biology approach was employed.
View Article and Find Full Text PDFCharcot-Marie-Tooth (CMT) neuropathies are highly heterogeneous disorders caused by mutations in more than 70 genes, with no available treatment. Thus, it is difficult to envisage a single suitable treatment for all pathogenetic mechanisms. Axonal Neuregulin 1 (Nrg1) type III drives Schwann cell myelination and determines myelin thickness by ErbB2/B3-PI3K-Akt signaling pathway activation.
View Article and Find Full Text PDFThe remarkable interaction between glial cells and axons is crucial for nervous system development and homeostasis. Alterations in this continuous communication can cause severe pathologies that can compromise the integrity of the nervous system. The most dramatic consequence of this interaction is the generation of the myelin sheath, made by myelinating glial cells: Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system.
View Article and Find Full Text PDF